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Abstract

Some of the most prominent results in causal inference have
been developed in the context of atomic interventions, fol-
lowing the semantics of the do-operator and the inferential
power of do-calculus. In practice, however, many real-world
settings call for more complex types of treatments that can-
not be represented by a simple atomic intervention. In this
paper, we investigate a general class of interventions that cov-
ers some non-trivial types of policies (including conditional
and stochastic), going beyond the atomic case. Our goal is
to develop a general understanding and formal machinery to
reason about the effects of those policies, similar to the robust
theory developed to handle the atomic case. Specifically, we
introduce a new set of inference rules (akin to do-calculus)
that can be used to derive claims about general interventions,
which we call σ-calculus. We develop a graph-based, efficient
procedure for finding estimands of the effect of general poli-
cies as a function of the available observational and experi-
mental distributions. We then prove that our algorithm and σ-
calculus are both sound for the tasks of identification (Pearl,
1995) and z-identification (Bareinboim and Pearl, 2012) un-
der this class of interventions.

1 Introduction
Causal relations are considered highly valuable and desir-
able throughout the data-driven sciences due to their inher-
ent interpretability and robustness to changing conditions. In
machine learning, for example, they play a key role due to
their amenability to extrapolation to new, unforeseen situa-
tions, and also their capability to support robust decision-
making. Making sense of the world and constructing co-
herent and transparent explanations about it, almost invari-
ably, hinge on our ability to learn and reason with cause
and effect relationships (Pearl, 2000; Spirtes et al., 2001;
Bareinboim and Pearl, 2016; Pearl and Mackenzie, 2018).

One of the most common ways of learning about causal
relations is through controlled experimentation. In practice,
however, performing experiments is not always feasible due
to its potentially harmful side effects, financial constraints,
and ethical considerations. This impossibility leads to one of
the fundamental challenges in causal inference, namely, to
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determine whether the effect of an intervention can be com-
puted without directly experimenting on the system, which
is known as the problem of identification of causal effects
(Pearl, 2000, Def. 3.2.4). Among many types of interven-
tions, the simplest and best understood is called atomic.
In modern causal inference, atomic interventions are usu-
ally modeled through the do-operator (Pearl, 1995), which
is denoted by do(X=x). Formally, do(X=x) represents the
symbolic operation of replacing the underlying causal mech-
anism that naturally dictates the behavior of a variable X
with a constant value x1.

The identification task relies on assumptions about the un-
derlying causal system, which is usually encoded in the form
of a causal graphical model. For concreteness, consider the
causal diagram in Fig. 1(a), where X represents the choice
to smoke, W age, Z a set of risk factors leading to tendency
to smoke (e.g., peer pressure, education, SES, psychologi-
cal age), and Y the development or not of lung cancer. The
goal of the task is to compute the average effect of X on Y
based on the observational (i.e., non-interventional) distribu-
tion P (W,Z,X, Y ). Using the do-operator, this quantity can
be formally written as P (Y |do(X = x)), which describes
the behavior of Y when X is fixed to x (smoking or not)
regardless of Z or any other confounding factors. Further-
more, the difference between two specific do-distributions,
P (Y |do(X = 1))− P (Y |do(X = 0)), measures the causal
changes of Y that are due to the deliberate variations of X .

Each specific interventional distribution induces a new
hypothetical regime that can be represented through a causal
diagram reflecting the corresponding change in mechanism.
For do(X = x), this corresponds to a diagram where the ar-
rows incoming to X are removed (Fig. 1(b)). We will an-
notate these diagrams with an explicit regime node σX to

1This primitive has appeared at different times and contexts
through causality’s history. It was introduced in econometrics by
(Haavelmo, 1943; Strotz and Wold, 1960). In statistics, potential
outcomes were introduced in the context of randomized experi-
ments by (Neyman, 1923), and then connected with observational
studies by (Rubin, 1974). In mathematical logic, counterfactuals
were discussed by (Lewis, 1973) with a possible worlds semantics.
They were then given a general and algorithmic treatment through
graphical models in AI (Pearl, 1993b; Pearl, 1995).



indicate that the causal mechanism of X has changed. This
is a critical construct, which will be discussed in Sec. 3).

There exists a growing body of literature concerned with
identification of do-interventions from data collected un-
der observational and experimental regimes, including cele-
brated results such as do-calculus (Pearl, 1993a; Pearl, 1995;
Pearl, 2000), and complete graphical and algorithmic condi-
tions (Tian and Pearl, 2002a; Tian, 2004; Shpitser and Pearl,
2006a; Shpitser and Pearl, 2006b; Huang and Valtorta, 2006;
Bareinboim and Pearl, 2012; Lee et al., 2019).

While the intervention do(X = 0) describes with mathe-
matical precision a counterfactual world where smoking is
banned from society, it is unlikely, in practice, that a policy
could be implemented such that cigarettes would be com-
pletely wiped out from the streets. In other words, we could
eventually predict the effect of this new, idealized policy,
however unlikely to be implemented in reality. The tension
between the result of the formal analysis and the practi-
cal, realizable result of an implemented policy has been a
point of intense debate in causal circles (Woodward, 2003;
Heckman, 2005; Cartwright, 2007; Pearl, 2010).

In this paper, we offer a mathematical solution to address
this decade-old debate. Going back to our example, for con-
creteness, policy-makers contemplate a more strict regula-
tion on underage smoking and higher taxes on cigarettes
sales that could be set in place. A sensible question in this
context could be – what is the effect of a policy that in-
hibits smoking in people under 21 years of age, by 90%?
Such intervention is certainly non-atomic (which would en-
tail that a 100% decrease in smoking should be enforced for
this group), and in this case, the underlying mechanism for
X is replaced with a softer mechanism; these interventions
are sometimes called soft or stochastic interventions.

Even though deciding the identifiability of complex in-
terventions has been studied in the literature, there is still
work to be done (Pearl, 2000, Ch. 4). For instance, (Pearl
and Robins, 1995) studied the effect of interventions in lon-
gitudinal settings where the decision in each time step is
dependant on the previous ones, which was called condi-
tional plans. Further, other works investigated the effect of
stochastic interventions, where the original causal mecha-
nism of the treatment variable is replaced with a new known
function (Dawid, 2002; Didelez et al., 2006; Tian, 2008;
Shpitser and Sherman, 2018). For the case when the new
function is unknown, the problem has been studied under
the rubrics of transportability (Bareinboim and Pearl, 2014;
Bareinboim and Pearl, 2016; Correa and Bareinboim, 2019).

Despite the high level of sophistication and generality
achieved for reasoning with atomic interventions, we high-
light the glaring difference with the non-atomic case. For
instance, there exist no counterpart for do-calculus in the
non-atomic case nor general results on identifiability from
experimental distributions produced by soft interventions.
In this paper, we develop a general, symbolic, and algorith-
mic treatment for identifiability of arbitrary non-atomic in-
terventions from both observational and experimental distri-
butions. More specifically, our contributions are as follows:

1. Symbolic characterization. We introduce a set of infer-
ence rules, called σ-calculus, to reason about the effect of
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Figure 1: (a) original causal diagram G. (b), (c), and (d)
show the causal diagrams after an atomic, conditional, and
stochastic intervention, respectively. See discussion in the
introduction and examples 1 and 2 for details.

general types of intervention. Further, we provide a syn-
tactical method for deriving and verifying claims about
such interventions given a causal graph.

2. Algorithmic solution. We develop an efficient procedure
to determine the identifiability of the (conditional) effect
of non-atomic interventions from observational and ex-
perimental distributions given a causal diagram.

2 Preliminaries
The basic semantic framework our work rests on is the
Structural Causal Models paradigm (Pearl, 2000, Ch. 7),
which allows one to represent the data-generation process
and different types of interventions:
Definition 1 (SCM). A Structural Causal Model M is a 4-
tuple 〈U,V,F , P (u)〉, where U is a set of exogenous (la-
tent) variables; V is a set of endogenous (observed) vari-
ables; F is a collection of functions such that each variable
Vi ∈ V is determined by a function fi ∈ F . Each fi is a
mapping from a set of exogenous variables Ui ⊆ U and a
set of endogenous variables Pai ⊆ V \ {Vi} to the domain
of Vi. The uncertainty is encoded through a probability dis-
tribution over the exogenous variables, P (U).

Note that this definition allows for latent confounders, so
the model is also known as Semi-Markovian. Each SCM M
is associated with a causal diagram where every Vi ∈ V is a
vertex, there is a directed edge (Vj → Vi) for every Vi ∈ V
and Vj ∈ Pai, and a bidirected edge (Vi L9999K Vj) for
every pair Vi, Vj ∈ V such that Ui∩Uj 6= ∅ (Vi and Vj have
a common latent confounder).

We assume that the underlying model is recursive, that
is, there are no cyclic dependencies among the variables.
Equivalently, the causal diagram corresponding to the SCM
is acyclic. The observable distribution is derived from M as

P (v) =
∑

u

∏
{i|Vi∈V} P (vi | pai, ui)P (u), (1)

where every term P (vi|pai, ui) is governed by the corre-
sponding function fi ∈ F that represents an autonomous
mechanisms affecting only Vi, locally (Aldrich, 1989).



A do(X=x) intervention results in a new structural causal
modelMx, which represents the state of the system after the
hypothetical intervention takes place. As for M , assump-
tions about the causal structure of Mx can be seen as the
corresponding causal diagram GX, which is the same as G
but for the absence of all edges incoming towards X. More-
over,Mx induces a probability distribution P (V|do(x)) that
can be established using Eq. (1) in the context of Mx, i.e.:

P (v|do(x))=
∑
u

∏
{i|Vi∈V}

P (vi|pai, ui, do(x))P (u|do(x)). (2)

The key observation here is that for every Vi ∈ V, Vi /∈
X, P (vi | pai, ui, do(x)) = P (vi | pai, ui), because
the functions fi in M and Mx are the same. Similarly,
P (u | do(x)) = P (u) since exogenous variables are not
affected by the do-operation. Moreover, for Vi ∈ X, the
function fi in Mx is independent of U ∪ (V \ {Vi}), hence
Pai = ∅, Ui = ∅, and the corresponding term P (Vi = vi |
do(x)) = 1, if vi is consistent with x; and 0, otherwise.
Then, P (v|do(x)) in Eq. (2) is also equal to:
∑
u

∏
{i|Vi∈V\X}

P (vi|pai,ui)P (u) v consistent with x

0 v inconsistent with x
. (3)

In the special case of Markovian models, where every unob-
servable variable in U affects at most one observable, Eq. (3)
is called the “truncated factorization product” (Pearl, 1993a;
Pearl, 2000; Bareinboim et al., 2012), which yields a map-
ping from the pre (P (V)) to the post-interventional distri-
bution (P (V|do(x))). In Fig. 1(a), for example, the effect
P (y|do(x))=

∑
w,z P (y|x, z, w)P (z|w)P (w) by Eq. (3).

It is unlikely that one could observe all variables in the
system in most practical applications. Consequently, realis-
tic causal diagrams usually account for latent (unobserved,
exogenous) variables that affect more than one observable,
which are represented through bidirected edges. In the fol-
lowing sections, we will address the problem of identifying
the effect of stochastic interventions in such class of models.

We follow standard notation in the field. Random vari-
ables are denoted with uppercase letters (e.g, C) while their
instantiations to particular values are written in lowercase
(e.g, c). Similarly, letters in bold (e.g, C) represent sets of
variables, and lowercase-bold letters (e.g., c) a particular
value assignment for them. Further, we denote by GWX the
graph that is the same as G except that the edges incom-
ing to variables in W and the edges going out from vari-
ables in X are removed. Let G[C] be the subgraph of G made
only of nodes in C⊂V and the edges between them. We
define Pa(C) and An(C), as the union of C ⊂ V with
its parents and ancestors, respectively. Also, the expression
(X⊥⊥Y | Z)G denotes that the variables in X are separated
from the variables in Y conditioned on Z according to the
d-separation criterion in the graph G (Pearl, 2000).

The proofs are provided in the Appendix.

3 Moving Beyond Atomic Interventions
In general, the result of an intervention encompasses a new
regime where the data-generating process differs from that

of the natural system only in the mechanisms associated
with the variables that have been intervened (Pearl, 1994;
Dawid, 2002; Dawid, 2015). From this point of view, we use
regime indicators as discussed in (Pearl, 2000, Sec. 3.2.2)
and (Dawid, 2002) to represent different types of interven-
tions. The regime indicator for interventions on a variableX
is denoted by σX , and encodes the fact that the function fx
in M has been replaced by a new function f∗x . This opera-
tion results in a new model MσX , with causal diagram GσX ,
and inducing a distribution P (V;σX). See Fig. 1(b)-(d) for
a few examples of post-interventional diagrams.

In particular, depending on the intervention, the function
f∗x could receive as inputs the values of variables other than
the original parents Pax and Ux. Accordingly, we will de-
note as Pa∗x and U∗x the set of observable and unobserv-
able parents of X in MσX , as dictated by f∗x . To avoid clut-
ter, when a regime indicator σX is present in a probability
expression, such as P (x|pax, ux;σX), Pax and Ux corre-
spond to Pa∗x and U∗x , respectively. Naturally, this means
that GσX may not be a subgraph of G, as it occurs with
do-interventions. One important assumption used through-
out the paper is that the hypothetical model MσX resulting
from the intervention σX does not contain cycles. Follow-
ing the convention in (Dawid, 2002), we augment GσX

with
a node σXi for every Xi ∈ X that graphically denote the
targets of intervention, together with the edge (σXi → Xi).

Representing Different Types of Interventions
Qualitatively different types of interventions can be mod-
eled by assigning different strategies to the indicator σX us-
ing the construct discussed above. We list in Table 1 general
types of interventions that will be used in the remaining of
the paper. The idle intervention represents the natural state
of the system; atomic or do interventions replace the func-
tion fX with a constant, while conditional ones replace it
with a deterministic function of some observables pa∗x. The
stochastic type sets the new f∗X such that the variableX will
follow a pre-specified distribution P ∗(X|pa∗x). To simplify
notation, whenever the strategy assigned to σX is clear from
the context, we will omit it in the probability expressions.
Also, we may just write P (V) whenever P (V;σX=∅). For
a set X⊂V, let σX={σX1

, . . .} represent an intervention af-
fecting the functions fxi of every Xi∈X.

Example 1 (Conditional Intervention). In the context of a
tutoring program, suppose that in Fig. 1(a) W represents
previous GPA of a student, Z student’s motivation, X af-
ter hours tutoring (or not), and Y the GPA at the end of the
term. Currently, students seek tutoring voluntarily, which de-
pends on their motivation. Given the limited amount of re-
sources, the school is considering to make after hours tutor-
ing mandatory for students with low GPAs, and offering this
service only to them. The proposed intervention can be en-
coded as σX = g(w), where g(w) = 1 if W is low GPA,
and 0 otherwise. Graphically, this change in policy is repre-
sented by the diagram in Fig. 1(c), whereX now depends on
W , not on Z. Still, we highlight that X was dependent on Z
in the observational regime and its corresponding dataset.



Type Strategy P (x | pax, ux;σX)

Idle ∅ (unaltered)
Atomic/do do(X = x′) δ(x, x′) (4)
Conditional do(X = g(pa∗x)) δ(x, g(pa∗x)) (5)

Stochastic/Random P ∗(X | pa∗x) P ∗(x | pa∗x) (6)

Table 1: (1st column) Different types of interventions. (2nd) The corresponding strategies that can be assigned to the indicator
variable σX . (3rd) Distributions thatX will display after the intervention is implemented. δ(a, b) = 1 if a = b, and 0 otherwise.

Example 2 (Stochastic Intervention). Recall the discus-
sion about the new smoking policy in the introduction. One
could estimate the effect of reducing by 90% smoking on
people under 21 years old by reasoning about a stochas-
tic intervention P ∗(x|w,z), depicted in Fig.1(d), such that
P ∗(X=1|W<21, z)=(0.1)×P (X=1|z), for every z.

Interestingly, the randomization procedure used in a
controlled experiment (Fisher, 1951) – represented by
the do-operator – can be seen as the implementation of
the stochastic intervention σX=P ∗(X), with P ∗(x)=1/2,
for x={0, 1}. This procedure induces the distribution
P (v;σX=P ∗(X)). Evidently, Fisher’s randomization is
physical, while the inferences studied here are about how
to determine a causal effect without actually perform-
ing the intervention in the real world. To understand this
connection more precisely, we first condition the post-
interventional distribution, P (v;σX=P ∗(X)), onX , which
leads to P (v|X=x;σX=P ∗(x)). Now notice that each in-
dividual for which X=x under σX is assigned treatment
completely at random (i.e., without the influence of any
other factor), which is the very definition of do(x), hence
P (v|x;σX=P ∗(x)) = P (v | do(x)).

Effect of General Interventions
Regardless of the particular type of intervention, we can rea-
son about the distribution that (the hypothetical) MσX

in-
duces. Let U∗ be the set of all unobservable variables in
MσX

, then using Eq. (1) we have:

P (v;σX) =
∑
u∗

∏
{i|Vi∈V}

P (vi|pai, ui;σX)P (u∗;σX). (7)

Every Vi ∈ V \ X is governed by the same function
in M and MσX , by definition, hence P (vi|pai, ui;σX) =
P (vi|pai, ui). For the exogenous, the variables in the set
U∗\U were introduced due to σX and were not originally in
M (e.g., the randomness for a stochastic intervention). Since
U is not affected by σX, it follows P (u;σX)=P (u), and

P (v;σX) =
∑
u∗

∏
{i|Vi∈X}

P (vi|pai, ui;σX)P (u∗\u;σX)

∏
{i|Vi∈V\X}

P (vi|pai, ui)P (u). (8)

While Eq. (8) holds in general, the distribution P (U) is
not observed. The challenge is then to find a function of the
observed distribution P (V) that is guaranteed to be equal
to the probability query of interest in the intervened model
MσX

, for any M inducing G. Formally,

Definition 2 (Effect Identifiability). Let Y,X,W ⊂ V
with W ∩ Y = ∅. The (conditional) effect of an interven-
tion specified by σX = {σX1

, . . . , σXn} on a set of out-
come variables Y, conditional on W, P (y|w;σX), is said
to be identifiable in G, if it is uniquely computable from the
joint distribution P (V), for every assignment (y,w), in ev-
ery model that induces G and P (V).
Remark 1. An important distinction between atomic and
more general interventions is that the former implicitly con-
ditions on the intervened variable X, more formally,

P (y | do(x)) = P (y;σX = do(X = x)) (9)
= P (y | x;σX = do(X = x)). (10)

Eq. (9) follows by definition, and Eq. (10) is immediate
since under the intervention σX=do(X=x), the probability
of X being different than the constant x is zero. In general,
P (y;σX) and P (y|x;σX) need not match one another.

Interestingly, while atomic interventions always reduce
the model structure, a policy-maker could envision a new
policy taking into account a wide range of covariates, not
matching the observational regime and previous policies (as
with Examples 1, 2).

4 A Calculus for General Interventions
In this section, we introduce a set of inference rules, in the
spirit of do-calculus (Pearl, 2000, Sec. 3.4), capable of han-
dling both atomic and non-atomic interventions, which we
call σ-calculus.
Theorem 1. [Inference Rules – σ-calculus] Let G be a
causal diagram compatible with a structural causal model
M , with endogenous variables V. For any disjoint subsets
X,Y,Z ⊆ V, two disjoint subsets T,W ⊆ V \ (Z ∪Y)
(i.e., possibly including X), the following rules are valid for
any intervention strategies σX, σZ, and σ′Z:
Rule 1 (Insertion/Deletion of observations):

P (y | w, t;σX) = P (y | w;σX)

if (Y ⊥⊥T |W) in GσX
. (11)

Rule 2 (Change of regimes under observation):

P (y | z,w;σx, σz) = P (y | z,w;σx, σ
′
z)

if (Y ⊥⊥ Z |W) in GσXσZZ and GσXσ′ZZ. (12)

Rule 3 (Change of regimes without observation):

P (y | w;σx, σz) = P (y | w;σx, σ
′
z)

if (Y ⊥⊥ Z |W) in G
σXσZZ(W)

and G
σXσ′ZZ(W)

, (13)



where Z(W) ⊆ Z is the set of elements in Z that are not
ancestors of W in GσX

.

The rules above follow from the semantics of σX =
{σX1

, . . . , σXk} as indicator of the change in causal mech-
anism of each variable in X according to a specified strat-
egy. Rule 1 ascertains the validity of the d-separation cri-
terion for reading conditional independence constraints in
the post-interventional distribution P (V;σX) using the in-
terventional graph GσX

. Rule 2 establishes a condition that
guarantees that the corresponding probability distribution is
the same under interventions σ′Z and σZ while Z = z is
observed. Rule 3 establishes a condition for changing the
regime indicator from σ′Z to σZ without affecting the asso-
ciated probability. This rule differs from rule 2 since it is
only applicable when Z is not observed.

In particular, these rules can be applied with σ′Z having
σZi=∅, to make one or more regime indicators for Zi ∈ Z
idle. When all indicators are idle the expression is estimable
from observational data. Differently than in the case of
atomic interventions and do-calculus, causal diagrams in-
duced by intervened models in this context are not neces-
sarily subgraphs of the original diagram, hence σ-calculus
needs to verify separation conditions in the corresponding
two models. In Appendix. B, we revisit a classical exam-
ple from (Pearl and Robins, 1995) that misses this subtlety
and reaches an incorrect conclusion. The same appendix also
provides a more detailed comparison of both calculi.

Comparison between σ-calculus and do-calculus
Independences in do-calculus rules usually include condi-
tioning on X. Notice that in our rules W could include vari-
ables in X, accounting for situations when the expression
has conditioning on X or part of it, but not necessarily the
whole set every time.

The new rule 2 allows one to change across regimes when
the variable under intervention is being observed. This is
consistent with the traditional rule 2 and remark 1 about the
do(.) operator having an implicit conditioning on the inter-
vened variable. Consider the back-door graph in Fig. 1(a)
and an intervention σX = do(g(z)), which is associated
with GσX = G (same argument in the observational and new
interventional regime). Using the new rule 2, we have:

P (y | x, z;σX) = P (y | x, z),

since (X⊥⊥Y | Z) holds in both GX and GσXX (same graph
in this case, Fig. 2(a)). One may be tempted to apply the new
rule 2 as its do-calculus counterpart, trying to claim that

P (y | z;σX) = P (y | x, z).

However, this is not the case for many models compatible
with the graph (see appendix for details).

Rule 3 licenses the addition or removal of a regime alto-
gether. This rule is not the exact counterpart of the same rule
in do-calculus. Consider again Fig. 1(a) with σZ=P ∗(z|w)
and its effect onW conditioned onZ. Traditional rule 3 tests
for (W ⊥⊥ Z) in GZ which leads to

P (w | do(z)) = P (w | z;σZ) = P (w).

X Y

Z
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(a) GX
X Y

Z

W

(b) GX

X Y

Z

W
σX

(c) GσXX

X Y

Z

W
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Figure 2: Graphs used to test the conditions required by rules
2 and 3 of σ-calculus in the derivation of the query in Ex-
ample 2 where σX = P ∗(x|z, w). Arrows shown in gray
indicate they have been cut.

In contrast, we consider the σZ in σ-calculus:
P (w | z;σZ) = P (w)P (z | w;σZ)/P (z;σZ),

which is almost always different than P (w). The important
distinction to make at this point is that for soft intervention
onZ, we are not necessarily conditioning on it. Without con-
ditioning, rule 3 of σ-calculus and independence (W ⊥⊥ Z)
in GZ (and GσZZ) yield P (w;σZ)=P (w). In contrast

P (w|z;σZ = do(z)) = P (w;σZ = do(z)) = P (w)

can be obtained by applying first rule 1 with (W ⊥⊥ Z) in
GσZ=do(z) and then rule 3 (more discussion in appendix).

Examples of Symbolic Derivations
We illustrate the use of σ-calculus rules by solving the
question in Example 2. Recall that our goal is to identify
P (y;σX) with σX = P ∗(x|w, z). We start by conditioning
on the set {X,Z,W},
P (y;σX) =∑
x,z,w

P (y|x, z, w;σX)P (x|z, w;σX)P (z, w;σX), (14)

Note that Rule 2 can be applied with σ′X=∅ to infer
P (y|x, z, w;σX) = P (y|x, z, w) following the indepen-
dence (Y ⊥⊥ X | Z,W ) in the GX and GσXX (see
Figs. 2(a) and (c), respectively). Also, Rule 3 (σ′X=∅) leads
to P (z, w;σX) = P (z, w), licensed by (Z,W ⊥⊥X) in GX
and GσXX (Figs. 2(b), (d)). Next, we replace P (x|z, w;σX)

using Eq. (6) by virtue of σX=P ∗(x|z, w):
P (y;σX) =

∑
x,z,w

P (y|x, z, w)P ∗(x|z, w)P (z, w). (15)

Notice that all terms in the right hand side of Eq. (15) are
either obtainable from P (V) or defined by the new inter-
vention itself, which means the target effect is identifiable
(see appendix B for a more detailed example).

A natural albeit important consequence of Thm. 1 is de-
scribed in the following corollary:
Corollary 1. Considering only atomic (and idle) interven-
tions, σ-calculus reduces to do-calculus.



Identifying Effects with (Atomic and Non-atomic)
Surrogate Experiments
It’s not uncommon that the effect of a certain interven-
tion is not identifiable from observational data alone when-
ever unobserved confounders are present. It may be the
case that experiments over surrogate variables may be avail-
able for use, which has been called in the literature the
problem of z-identification (Bareinboim and Pearl, 2012;
Lee et al., 2019). For instance, experiments over a set of
surrogate variables Z may be more accessible to manipula-
tion than the target effect σX. In this case, still, experiments
are assumed to be the product of controlled trials, that is, of
atomic interventions. In this section, we leverage data from
surrogate experiments obtained from general interventions.

Example 3. To illustrate this setting, consider the causal di-
agram in Fig. 3(a) and the effect P (y|r, z;σX = P ∗(X|R)),
which is not identifiable from P (V). However, suppose a
distribution P (V;σZ = P ∗(Z|X)) is given as an additional
input. We can then write the target effect as

P (y|r, z;σX)

= P (y|r, z;σX , σZ=do(z)) (16)
= P (y|r, z;σZ=do(z)) (17)

=
∑
x′

P (y|r, x′, z;σZ=do(z))P (x′|r, z;σz=do(z)). (18)

Eq. (16) follows from Rule 2 and the independence (Y ⊥⊥
Z | R) in GσXσZ=∅Z and GσXσZ=do(z)Z ; Eq. (17) by
Rule 3 with (Y ⊥⊥ X | R,Z) in GσXσZ=do(z)X and
GσX=∅σZ=do(z)X . At this point, note that if the given exper-
iment was randomized (i.e., do(z)), the target effect would
be identifiable. However, the given distribution came from
policy σZ=P ∗(Z|X). Nevertheless, we can condition on X
and obtain Eq. (18). We can then apply Rule 2 to change
the strategy of σZ from do(Z) to P ∗(Z|X) due to (Y ⊥⊥
Z | R,X) in GσZ=do(z)Z and GσZ=P∗(Z|X)Z that license
P (y|r, x′, z;σZ=do(z)) = P (y|r, x′, z;σZ=P ∗(Z|X)).
Finally, the second factor in Eq. (18) can be obtained from
the observational data by applying Rule 1 with (X ⊥⊥ Z) in
GσZ=do(z) to remove the observation on z, followed by Rule
3 and (X ⊥⊥ Z | R) in GσZZ and GσZ=∅Z to change σZ to
the idle regime. Putting the pieces together, we obtain the
following expression:

P (y|r, z;σX)=
∑
x′

P (y|r, x′, z;σZ=P ∗(Z|X))P (x′|r). (19)

5 Identifying the Effect of General
Interventions Systematically

Even though σ-calculus is a great tool for understanding and
reasoning about the logical implications of general interven-
tions, searching for a derivation in moderately-sized causal
models can be a very challenging task given the combina-
torial nature of the problem. Also, the solution of realistic
applications involving models with thousands of variables
requires the use of computers. In this section, we develop an
algorithmic solution for identifying the (conditional) effect
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Figure 3: (a) is the original diagram for which we want to
identify the effect P (y|r, z;σX=P ∗(X|R)) corresponding
to the diagram in (b). Experimental data is given in the form
of P (V;σZ=P

∗(Z|X)) corresponding to (c). Diagram in
(d) is intermediate in the derivation of the target effect (see
text for details).

of general interventions (Table 1) from observational and ex-
perimental data, based on a given causal diagram G.

Consider a query of interest P (y,w;σX) and let D =
An(Y ∪W)GσX , then from Eq. (7) we can sum out vari-
ables that are not ancestors of (Y ∪W) and obtain

P (y,w;σX) =
∑

v\(y∪w)

P (v;σX)

=
∑

d\(y∪w)

∑
u∗

∏
{i|Vi∈D}

P (vi|pai, ui;σX)P (u∗;σX). (20)

For convenience, and following (Tian and Pearl, 2002a),
we define for any C ⊆ V the quantity Q[C](v), called c-
factor, to denote the following function

Q[C;σX](v) =∑
u(C)

∏
{i|Vi∈C}

P (vi|pai, ui;σX)P (u(C);σX), (21)

where U(C) =
⋃
Vi∈C Ui. In particular, note that

Q[V;σX](v)=P (v;σX) and when σX = ∅, Q[C;σX] =
Q[C]. For convenience, we will often write Q[C](v) as
Q[C], and whenever C = {Vi} we will write Q[Vi] in-
stead of Q[{Vi}]. Using c-factors, Eq. (20) translates into
P (y,w;σX) =

∑
d\(y∪w)Q[D;σX]. Now consider the

query P (y|w;σX), we can write

P (y|w;σX)=
P (y,w;σX)∑
y P (y,w;σX)

=

∑
d\(y∪w)Q[D;σX]∑

d\wQ[D;σX]
. (22)

Moreover, Eq. (22) can be further simplified as stated in
the following
Lemma 1. Let Y,X,W ⊂ V with W ∩Y = ∅ and let G
be a causal diagram over the variables V. The effect P (y |
w;σX) is given by:

P (y|w;σX) =
∑

a\(y∪w)
Q[A;σX]

/∑
a\w

Q[A;σX] , (23)



where A is the set of all variables connected to Y (in-
cluding Y) by any path (regardless of the directionality) in
GσX[D]W, with D = An(Y ∪W)GσX .

The problem we need to solve now is to determine if, and
how, the c-factor Q[A;σX] can be computed from the ob-
served data (i.e., P (V)=Q[V]). To do so, we will lever-
age the machinery developed by (Tian and Pearl, 2002a;
Huang and Valtorta, 2006) that deals with the identification
of c-factors from other (larger) c-factors. First, note that the
set of observable variables present in a causal diagram G can
be partitioned into sets called c-components (Tian and Pearl,
2002a). Two variables are in the same c-component set if
and only if they are connected by a path composed entirely
of bidirected edges in G. Using this notion we state the fol-
lowing results, which will be key for our algorithm:
Lemma 2. Let A be defined relative to X,Y,W as in
lemma 1, then:

Q[A;σX] = Q
[
AX;σX

]
Q
[
A \AX

]
, (24)

where AX is the union of the c-components of GσX[A] con-
taining variables in X.

Note that the factor Q[A\AX] in Eq. (24) corresponds
to the idle regime. Hence, to asses if such c-factor is com-
putable from P (V) or a given P (V;σZ), we can use the
algorithm IDENTIFY from (Tian and Pearl, 2002a) and the
following lemma.
Lemma 3. Let σZ indicate any intervention on Z and let
C ⊆ V. Then, Q[C] = Q[C;σZ] if C ∩ Z = ∅.

What is left is to reason about the c-factor Q[AX;σX].
In the case of atomic, conditional and stochastic interven-
tions; AX is simply X because for those interventions,
variables in X do not share unobservable parents with any
other variable under intervention. Therefore, Q[AX;σX] =∏
X∈XQ[X;σX] where each Q[X;σX] = Q[X;σX ] is

obtained by replacing it with the corresponding equation
among (4), (5) or (6).

Following the discussion in this section, we propose the
algorithm σ-IDENTIFY (Alg. 1). This procedure takes as in-
put the variables defining a query, the specification of σX
(i.e., what type of intervention is being applied and its argu-
ments), a set of available distributions (Z = {σ∅}when only
P (V) is known.) and the causal diagram. The subroutine
‘REPLACE’ handles factors of intervened variables, replac-
ing them according to the type of intervention. σ-IDENTIFY
runs in O(n4z) time, where n is the number of nodes in G
and z = |Z| (see Appendix C).

For an illustration, we run σ-IDENTIFY to identify
P (y|r;σX=P ∗(X|R)) in Fig. 3(a), where Y = {Y },
W = {R} and σX = {σX=P ∗(X|R)}; from observa-
tion and experimental data Z = {σ∅, σZ=P ∗(Z|X)}. Here,
A = {R,X,Z, Y } and the c-components of GσX [A] are
A1 = {R, Y }, A2 = {Z} and A3 = {X}. The loop
in line 2 will pick up A1 with σZ = σZ = P ∗(Z|X),
where Bi = {R,X, Y,W} is the c-component of GσZ

(Fig. 3(c)) containing A1, for which IDENTIFY will re-
turn

∑
x′ P (y|r, x′, z;σZ)P (x′, r;σZ). Next, in the same

loop, A2 matches with σZ = σ∅ and IDENTIFY returns

Algorithm 1 σ-IDENTIFY(Y,W, σX,Z,G)
Input: G causal diagram over a set of variables V, Y,W ⊆ V dis-
joint subsets of variables, an intervention strategy σX defined over
a set X ⊆ V, and a set Z = {σZi}ni=1 of known (interventional)
distributions.
Output: P (y|w;σX) in terms of available distributions or FAIL.
1: let A be defined as in lemma 1, and let A1, . . . ,An be the set

of c-components of GσX[A].
2: for each Ai containing no variable in X and every σZ ∈ Z

such that Ai ∩ Z = ∅ do
3: let Bi be the c-component of GσZ such that Ai ⊆ Bi.
4: if IDENTIFY(Ai,Bi, Q[Bi],GσZ) does not FAIL then
5: Q[Ai;σX] = IDENTIFY(Ai,Bi, Q[Bi],GσZ).
6: move to the next Ai.
7: end if
8: end for
9: for each Ai containing variables in X let Q[Ai;σX] =

REPLACE(Ai, σX).
10: if any Q[Ai] was not assigned then return FAIL.
11: let Q[A;σX] =

∏
iQ[Ai;σX].

12: return
∑

a\(y∪w)Q[A;σX]
/∑

a\wQ[A;σX] .

∑
r′,w P (z|r′, w, x)P (r′, w). Line 9 handles A3 and re-

places it with P ∗(x|r) according to the intervention σX. Fi-
nally, the return expression is

P (y|r;σX) = Q[A;σX]
/∑

y
Q[A;σX] , (25)

where
Q[A;σX]=

∑
x,z

P ∗(x|r)(
∑
x′

P (y|r, x′, z;σZ)P (r, x′;σZ))

(
∑
r′,w

P (z|r′, w, x)P (r′, w)) (26)

Theorem 2. The effect P (y | w;σX) is identifiable if σ-
IDENTIFY (Alg. 1) does not fail. Moreover, the expression
returned is a valid estimand for the effect.

6 Conclusions
In this paper, we introduced a set of inference rules for rea-
soning about the effect of general interventions (Thm. 1),
which has been called σ-calculus. The σ-calculus allows one
to discover and verify from the causal graph, logical state-
ments about general interventions generated by an arbitrary
SCM. We showed how these rules can be used to identify
the effect of interventions from a combination of observa-
tional and experimental data. Finally, we developed an algo-
rithm (Alg. 1) that decides in an automated fashion whether
a reduction of the effect of interest to the set of observed
quantities (observational and experimental) exists; if so, it
also returns the corresponding mapping. The algorithm and
σ-calculus were proven sound and efficient for the task of
identification of general interventions (Thm. 2), subsuming
previous treatment for atomic interventions by do-calculus.
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A Calculus for Stochastic Interventions:
Causal Effect Identification and Surrogate

Experiments - Appendix

A Proofs for Section 3
Proposition 1. Let σX be an intervention where every vari-
able in U∗ \ U affects at most one X ∈ X. Then for any
Markovian model the effect P (y;σX) is given by∑

v\y

∑
u(X)

∏
{i|Vi∈X}

P (vi|pai;σX)∏
{i|Vi∈V\X}

P (vi|pai). (27)

Proof. In this kind of models the set U can partitioned into
disjoint sets, with Ui affecting only Vi. Also, it is the case
that (Ui ⊥⊥ Pai) hence

P (u) =
∏
i

P (ui) =
∏
i

P (ui|pai).

From Eq. 8 we can distribute each P (ui|pai) so
that P (vi|pai, ui)P (ui) = P (vi|pai, ui)P (ui|pai) =
P (vi, ui|pai).

P (v;σX) =
∑
u∗

∏
{i|Vi∈X}

P (vi|pai, ui;σX)P (u∗\u;σX)

∏
{i|Vi∈V\X}

P (vi, ui | pai). (28)

The sum over U can be broken into sums over U \U and
for each Ui. Pulling the Ui’s sums into the product we have:

P (v;σX) =
∑
u∗\u

∏
{i|Vi∈X}

P (vi|pai, ui;σX)P (u∗\u;σX)

∏
{i|Vi∈V\X}

∑
ui

P (vi, ui | pai), (29)

which simplifies to

P (v;σX) =
∑
u∗\u

∏
{i|Vi∈X}

P (vi|pai, ui;σX)P (u∗\u;σX)

∏
{i|Vi∈V\X}

P (vi | pai). (30)

If the randomness of the interventions in σX is not shared
among them (i.e. each Ui ∈ U∗ \U only affects a particular
Vi ∈ X), then we can follow a similar reasoning to remove
the sum over U∗ \U and get

P (v;σX) =
∏

{i|Vi∈X}

P (vi|pai;σX)
∏

{i|Vi∈V\X}

P (vi|pai).

(31)

Finally, we can sum over V \ Y in both sides to obtain
Eq. (27).

B Proofs and Examples for Section 4
Theorem 1. [Inference Rules – σ-calculus] Let G be a
causal diagram compatible with a structural causal model
M , with endogenous variables V. For any disjoint subsets
X,Y,Z ⊆ V, two disjoint subsets T,W ⊆ V \ (Z ∪Y)
(i.e., possibly including X), the following rules are valid for
any intervention strategies σX, σZ, and σ′Z:
Rule 1 (Insertion/Deletion of observations):

P (y | w, t;σX) = P (y | w;σX)

if (Y ⊥⊥T |W) in GσX
. (11)

Rule 2 (Change of regimes under observation):

P (y | z,w;σx, σz) = P (y | z,w;σx, σ
′
z)

if (Y ⊥⊥ Z |W) in GσXσZZ and GσXσ′ZZ. (12)

Rule 3 (Change of regimes without observation):

P (y | w;σx, σz) = P (y | w;σx, σ
′
z)

if (Y ⊥⊥ Z |W) in G
σXσZZ(W)

and G
σXσ′ZZ(W)

, (13)

where Z(W) ⊆ Z is the set of elements in Z that are not
ancestors of W in GσX

.

Proof. Rule 1 Both sides of the expression refer to the same
model MσX and the corresponding causal diagram GσX . So
the condition licenses the equality by application of the d-
separation criterion in the context of this pair.

To prove the next two rules, we will consider a new SCM
M∗ with observable variables V∗ = V ∪ σZ, σZ =
{σZ}Z∈Z, that is a new node for each variable affected by
interventions on variables in Z. M∗ has a set of unobserv-
ables U∗ ⊇ U, and the distribution P (u) is the same. Fur-
ther, M∗ has a set of functions F∗ such that f∗vi = fvi for
Vi ∈ V \ (X ∪ Z), for X ∈ X let f∗x = fσX (the function
for X in the model MσX

). Finally, for f∗z , Z ∈ Z let

f∗z =

{
fσ′Z if σZ = 0

fσZ if σZ = 1
, (32)

where fσZ is the function of Z in the model MσZ
and fσ′Z

the same function in Mσ′Z
.

The modelM∗ induces a graph G∗ where pai for any Vi ∈
V\Z is the same in as in GσX

, while pai, Vi ∈ Z is the union
of the parents of Z in Gσ′Z and GσZ

.
Let P ∗ denote the probability distribution induced by

M∗. We have that P ∗(v|σZ = 1) is exactly the
same as P (v;σX, σZ) while P ∗(v|σZ = 0) behaves as
P (v;σX, σ

′
Z). It follows that for any pair of disjoint sets

A,B ⊂ V:

P ∗(a | b, σZ = 1) = P (a | b;σX, σZ), and (33)

P ∗(a | b, σZ = 0) = P (a | b;σX, σ′Z). (34)

Rule 2 If (σZ ⊥⊥Y |W,Z) in G∗ it follows

P (y | z,w;σX, σZ) = P ∗(y | z,w, σZ = 1) (35)
= P ∗(y | z,w, σZ = 0) (36)

= P (y | z,w;σX, σ
′
Z). (37)



If this independence does not hold, there exists a path from
σZ to some Y ∈ Y in G∗ that is d-connected given W ∪ Z.
Let p (without loss of generality) be such a path with no
node in Z other than Z in it. The path p must start with
σZ → Z ← A, for some variable A, else it is blocked by
conditioning on Z. The edge (Z ← A) is either present in
GσXσZ

Z or in GσXσ′ZZ, which implies the portion of p from
Z to Y is present in one of those graphs and d-connected
given W, which leads to a contradiction to the conditions in
the rule.
Rule 3 If (σZ ⊥⊥Y |W) in G∗ it follows

P (y | w;σX, σZ) = P ∗(y | w, σZ = 1) (38)
= P ∗(y | w, σZ = 0) (39)

= P (y | w;σX, σ
′
Z). (40)

If this independence does not hold, there exists a path from
σZ to some Y ∈ Y in G∗ that is d-connected given W. Let
p (without loss of generality) be such a path with no node
in Z other than Z in it. If p starts with σZ → Z ← A, Z
must have a descendant in W which implies Z /∈ Z(W).
Hence the edge (Z ← A) is in G

σXσZZ(W)
or G

σXσ′ZZ(W)
.

If p starts with σZ → Z → A, (Z → A) is also in one of
those graphs.
Then, the portion of p from Z to Y exists either in
G
σXσZZ(W)

or G
σXσ′ZZ(W)

and is d-connected given W, a
contradiction to at least one of the independences in the rule.

The next result shows that the rules of do-calculus fol-
low from σ-calculus when only atomic (and idle) interven-
tions are considered. Before presenting the proof we recall
the rules of do-calculus:
Rule 1

P (y | do(x),w, t) = P (y | do(x),w)

if (Y ⊥⊥T | X,W) in GX. (41)

Rule 2

P (y | do(x), do(z),w) = P (y | do(x), z,w)

if (Y ⊥⊥ Z | X,W) in GXZ. (42)

Rule 3

P (y | do(x), do(z),w) = P (y | do(x),w)

if (Y ⊥⊥ Z | X,W) in G
XZ(W)

, (43)

where Z(W) ⊆ Z are not ancestors of W in GX.
Corollary 1. Considering only atomic (and idle) interven-
tions, σ-calculus reduces to do-calculus.

Proof. Consider the rules of σ-calculus with σX = do(x),
σZ = do(z) and σ′Z = ∅. Accordingly the graphs associated
with the conditions become

GσX
= GX, (44)

GσZ
= GZ, (45)

Gσ′Z = G. (46)

Also let W′ = X ∪W.
Rule 1
Consider rule 1 of σ-calculus, if (Y⊥⊥T |W′) ≡ (Y⊥⊥

T | X,W) in GX we have

P (y | w′, t;σX) = P (y | w′;σX), (47)

replacing W′ leads to

P (y | x,w, t;σX) = P (y | x,w;σX). (48)

Then by Eq. (10) we have

P (y | do(x),w, t) = P (y | do(x),w), (49)

which matches rule 1 in do-calculus.
Rule 2
Consider rule 2 of σ-calculus, that needs to be tested in

GXZZ and GXZ. It is trivial to see that any conditional inde-
pendence satisfied by the latter is also satisfied by the former.
Then if (Y ⊥⊥ Z |W′) ≡ (Y ⊥⊥ Z | X,W) in GXZ:

P (y | z,w′;σX, σZ) = P (y | z,w′;σX), (50)

replacing W′ leads to

P (y | z,x,w, ;σX, σZ) = P (y | z,x,w;σX). (51)

Then by Eq. (10) we have

P (y | do(x), do(z),w) = P (y | do(x), z,w), (52)

matching rule 2 of do-calculus.
Rule 3
Consider rule 3 of σ-calculus, that needs to be tested in

G
XZZ(W′)

and G
XZ(W′)

. As before, we only need to test
the latter, because it satisfies a subset of the independencies
of the former. Moreover, in that graph X has no ancestors
(because of the X), hence no node in Z has descendants in
X and Z(W ∪ X) = Z(W). Then if (Y ⊥⊥ Z | W′) ≡
(Y ⊥⊥ Z | X,W) in G

XZ(W)
, we have

P (y | w′;σX, σZ) = P (y | w′;σX), (53)

replacing W′ leads to

P (y | x,w;σX, σZ) = P (y | x,w;σX). (54)

Note that (Y⊥⊥Z | X,W) in G
XZ(W)

implies the same in-
dependence in GXZ which could only have less edges. Then,
we can apply rule 1 of σ-calculus to introduce an observa-
tion on z to the expression in the left hand side:

P (y | z,x,w;σX, σZ) = P (y | x,w;σX); (55)

finally by Eq. (10) we have

P (y | do(x), do(z),w) = P (y | do(x),w), (56)

matching rule 3 of do-calculus.



Comparison between σ-calculus and do-calculus
Independences in do-calculus rules usually include condi-
tioning on X. Notice that in our rules W could include vari-
ables in X, accounting for situations when the expression
has conditioning on X or part of it, but not necessarily the
whole set every time.

The new rule 2 allows one to change across regimes when
the variable under intervention is being observed. This is
consistent with the traditional rule 2 and remark 1 about the
do(.) operator having an implicit conditioning on the inter-
vened variable. Consider the back-door graph in Fig. 1(a)
and an intervention σX = do(g(z)), which is associated
with GσX = G (same argument in the observational and new
interventional regime). Using the new rule 2, we have:

P (y | x, z;σX) = P (y | x, z), (57)

since (X⊥⊥Y | Z) holds in both GX and GσXX (same graph
in this case, Fig. 2(a)). One may be tempted to apply the new
rule 2 as its do-calculus counterpart, trying to claim that

P (y | z;σX) = P (y | x, z). (58)

However, this is not the case, to see why, first condition on
X in the l.h.s.,

P (y | z;σX) =
∑
x

P (y | x, z;σX)P (x | z;σX) (59)

=
∑
x

P (y | x, z)P (x | z;σX), (60)

where the last equality follows from Eq. (57). Note that, in
general, Eq. (60) will not be equal to P (y | x, z).

Now consider the intervention σX = P ∗(X|W ). Using
rule 2 with (Y ⊥⊥X | Z,W ) in GX and GσXX yield

P (y | x, z, w;σX) = P (y | x, z, w). (61)

One might surmise that the effect of X on Y conditioned on
Z, no longer on W , could be computed, i.e.,

P (y | x, z;σX) = P (y | x, z). (62)

We can manipulate both sides of the equality to see clearly
the differences. First we massage the expressions such that
we have the probability of each variable given its parents,
for the left hand side:

P (y | x, z;σX)

=
P (y, x | z;σX)

P (x | z;σX)
(63)

=

∑
w P (y, x, | z, w;σX)P (w;σX)∑
w P (x | z, w;σX)P (w;σX)

(64)

=

∑
w P (y | x, z, w;σX)P (x | z, w;σX)P (w;σX)∑

w P (x | z, w;σX)P (w;σX)
(65)

From eq. (61) and rule 3 with (W ⊥⊥X) in GσXX and GX
we have P (w;σX) = P (w), it follows

P (y|x, z;σX) =

∑
w P (y|x, z, w)P (x|z, w;σX)P (w)∑

w P (x|z, w;σX)P (w)
(66)

X
Y

Z

T

W

(a) G

X
Y

Z

T

W

(b) GT

Figure 4: Model used to exemplify the use of rule 3 (see
text).

For the right hand side,

P (y | x, z) =
∑
w

P (y | x, z, w)P (w | x, z) (67)

=
∑
w

P (y | x, z, w)P (w) (68)

If P (x|z, w;σX) is independent of W then eqs. (66) and
(68) become the same. It is easy to find a model not sat-
isfying this constraint and equality. This example shows
that even though there is no open confounding path pass-
ing through W in the observational case, W will be needed
due to its role in the new policy affecting X - i.e., Eq. (61)
holds while Eq. (62) does not.

Rule 3 licenses the addition or removal of a regime al-
together. This rule is not the exact counterpart of the same
rule in do-calculus. As mentioned before, having the do(.)
operator not only specifies a change in regime but a condi-
tioning on the intervened variables. To illustrate this point,
consider the causal diagram in Fig. 4(a) and the intervention
σT = do(t = P ∗(t | y)) and its effect on Y . Traditional rule
3 tests for (Y ⊥⊥ T ) in GT (Fig. 4(b)) which leads to

P (y | do(t)) = P (y | t;σT ) = P (y). (69)

In contrast, we consider the σt in σ-calculus:

P (y | t;σT ) =
P (y)P (t | y;σT )

P (t;σT )
, (70)

which is almost always different than P (y). The important
distinction to make at this point is that for soft intervention
on T , we are not necessarily conditioning on it. By rule 3 of
σ-calculus and the independence (Y ⊥⊥T ) in GT (and GσTT )
we have

P (y;σT ) = P (y). (71)

If the intervention was σT = do(t), to reach the same con-
clusion as in (69), we can use rule 1 with (Y ⊥⊥ T ) in
GσT = GT and rule 3 with (Y ⊥⊥ T ) in GT (note that the
independences collapsed to the same one), i.e.,

P (y | do(t)) = P (y | t;σT ) (72)
= P (y;σT ) (Rule 1) (73)
= P (y). (Rule 3) (74)

Consider the same causal diagram with the interven-
tion σX = g(w). The independece (Y ⊥⊥ X | Z,W ) in
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Figure 5: Pair of models associated with Example 4.

G
σXX(Z,W )

= GσX = G licenses the application of rule 1
and 3, which implies, respectively,

P (y | x, z, w;σX) = P (y | z, w;σX) = P (y | z, w).
(75)

More elaborate examples
Example 4 (A derivation in σ-calculus). Consider the
causal diagram in Fig. 5(a) and the target effect P (y |
x, z;σZ , σA) with σZ = P ∗(z|c) and σA = P ∗(a|x). We
can use the rules of σ-calculus to derive the effect as follows:

P (y | x, z;σZ , σA) (76)

condition on D,A

=
∑
d,a

P (y | x, z, d, a;σZ , σA)P (d, a | x, z;σZ , σA)

(77)

Rule 1: (Y ⊥⊥ Z | X,D,A) in GσZσA . Also since (D,Z ⊥⊥
A,X) in GσZσA we can factorize the second term:

=
∑
d,a

P (y | x, d, a;σZ , σA)

P (d | z;σZ , σA)P (a | x;σZ , σA) (78)

Rule 2: (Y ⊥⊥D | X,A) in GσZσAD, GσZσAσD=do(d)D.

=
∑
d,a

P (y | x, d, a;σZ , σA, σD)

P (d | z;σZ , σA)P (a | x;σZ , σA) (79)

Rule 3: (D ⊥⊥ A | Z) in GσZσAA and GσZA, also rule 3:
(A⊥⊥ Z | X) in GσZσAZ and GσAZ

=
∑
d,a

P (y|x, d, a;σZ , σA, σD)P (d|z;σZ)P (a|x;σA)

(80)

Rule 3: (Y ⊥⊥ Z | X,D,A) in G
σZσAσDZ(X,D,A)

=

GσZσAσD

=
∑
d,a

P (y | x, d, a;σA, σD)P (d | z;σZ)P (a | x;σA)

(81)
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X2
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Z

(a) G
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Z
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(b) GσX (C1)

X1

X2

Y

Z

S1

S2

(c) GσX (C2)

Figure 6: Causal diagrams associated with Example 5.

Rule 2: (D ⊥⊥ Z) in GσZZ , GD.

=
∑
d,a

P (y | x, d, a;σA, σD)P (d | z)P (a | x;σA)

(82)

Reordering the terms and conditioning on Z (as Z ′ to avoid
confusion with the argument Z in the query):

=
∑
d,a

P (d | z)P (a | x;σA)∑
z′

P (y | x, z′, d, a;σA, σD)P (z′ | x, d, a;σA, σD)

(83)

Rule 1: (Z ⊥⊥X,D,A) in GσAσD .

=
∑
d,a

P (d | z)P (a | x;σA)∑
z′

P (y | x, z′, d, a;σD)P (z′;σA, σD) (84)

Rule 3: (Z ⊥⊥A,D) in GσAσDA,D and GA,D.

=
∑
d,a

P (d | z)P (a | x;σA)
∑
z′

P (y | x, z′, d, a)P (z′)

(85)

Motivation from a Classical Example
Example 5. Consider the the dynamic plan problem first
studied in (Pearl and Robins, 1995) and shown in Fig. 6(a).
The goal is to assess the distribution P (y;σX) in two hypo-
thetical environments where:
C1 the values of (X1, X2) have been fixed to (x1, x2), in

standard do-form, i.e., σX = {σX1 = do(x1), σX2 =
do(x2)}. The corresponding GσX

is shown in Fig. 6(b).
C2 the value ofX1 is fixed to x1 andX2 is set conditionally

onX1, Z based on a function g(x1, z). That is, σX1
is as

before and σX2
= δ(x2, g(x1, z)). The corresponding

GσX
is shown in Fig. 6(c).

In (Pearl and Robins, 1995), the impact of the plan on the
outcome variable Y is denoted as P (y | x̂1, . . . , x̂n), here it
is written as P (y;σx). While the first scenario (C1) is identi-
fiable by the rules of do-calculus (and σ-calculus), contrary



to previous beliefs (Pearl, 2000, pp.120), and as hinted by
(Tian, 2008), the plan (C2) is not identifiable from P (v).
The extra edge Z → X2 in Fig. 6(c) (C2) makes X1 and
Y dependent conditional on X2, hence the same derivation
strategy does not work.

We formally show that the effect of σX (C2) is not identi-
fiable. P (y;σX) can be written as

P (y;σX) =
∑

x1,x2,z

P (x;σX)Q[Z, Y ]. (86)

From (Huang and Valtorta, 2008) we have that Q[Z, Y ] is
not identifiable from P (x1, x2, z, y) = Q[V]. This means
that there exists two modelsM1 andM2, compatible with G,
that induce the same P (v) but for some v′ = (x′1, x

′
2, z
′, y′)

we have Q1[Z, Y ](v′) = a, Q2[Z, Y ](v′) = b with a 6= b.
Assume, without loss of generality that a > b. Then consider
the intervention do(X1 = x′1), do(X2 = g(x1, z)) with

g(x1, z) =

{
x′2 , if (x1, z) = (x′1, z

′)

other than x′2 , if (x1, z) 6= (x′1, z
′)
. (87)

We will extend a strategy used by (Huang and Valtorta,
2008) to construct two models M ′1 and M ′2 where the do-
main of Y is DY × {0, 1}, where DY is the domain of Y
in M1,M2. Let F (x2) be a probability function from DX2

to {0, 1}, such that P (F (x2) = i) > 0, i = 0, 1 and
P (F (x2) = 0) = 1 − P (F (x2) = 1). In M ′i , i = 1, 2
we define:

P
M ′i
i ((y, k)|x2) = PMi(y|x2)P (F (x2) = k). (88)

And for Vj ∈ {X1, X2, Z} let PM
′
i (vj |paj) =

PMi(vj |paj). We can verify that

PM
′
1(v \ y, (y, k))

= QM
′
1 [V \ {Y }, (Y,K)](v \ y, (y, k)) (89)

= QM1 [V \ {Y }, (Y,K)](v)P (F (x2) = k) (90)

= QM2 [V \ {Y }, (Y,K)](v)P (F (x2) = k) (91)

= QM
′
2 [V \ {Y }, (Y,K)](v \ y, (y, k)) (92)

= PM
′
2(v \ y, (y, k)). (93)

Under intervention, we have that PM
∗
i (y′), i=1,2 is given

by

PM
∗
i ((y′, 0)) =

∑
x1,x2,z

Q∗[X1]Q
∗[X2]Q

M ′i [Z, Y,K].

(94)

Note that Q∗[X1] = 1 for X1 = x′1 and 0 otherwise. Simi-
larly, Q∗[X2] = 1 for X2 = g(x1, z) and 0. Hence

PM
∗
i ((y′, 0))

=
∑
x2,z

Q∗[X2](x
′
1, x2, z)Q

M ′i [Z,Y ,K](z, x2, (y
′,0)).

(95)

By construction we have

QM
′
i [Z,Y ,K](z, x2, (y

′,0))

= QMi [Z,Y ,K](z, x2, y
′)P (F (x2) = 0). (96)

Let P (F (x′2) = 0) = 1/2 and P (F (x2) = 0) = (a− b)/4,
for x2 6= x′2. It yields:

PM
∗
i ((y′, 0)) =( 12 )Q

M ′i [Z,Y ](z′, x′2, y
′)+ (97)(

a−b
4

) ∑
x2 6=x′2,

x2=g(x
′
1,z)

QM
′
i [Z,Y ](z, x2, y

′).

For M∗1 :

PM
∗
1 ((y′, 0)) = 1

2a
(
a−b
4

) ∑
x2 6=x′2,

x2=g(x
′
1,z)

QM
′
i [Z,Y ](z, x2, y

′).

> 1
2a. (98)

As for M∗2 :

PM
∗
1 ((y′, 0)) = 1

2b+
(
a−b
4

) ∑
x2 6=x′2,

x2=g(x
′
1,z)

QM
′
i [Z,Y ](z, x2, y

′)

< 1
2b+

a−b
4 < 1

2a. (99)

Then, M ′1,M
′
2 and M∗1 ,M

∗
2 are compatible with G and G∗,

match in P (v) and provide different plan effects.
This example suggests that the rules of do-calculus are not

suitable to reason about interventions where the graphical
structure of the intervened diagram is contingent to the type
of intervention.

C Proofs for Section 5
Lemma 1. Let Y,X,W ⊂ V with W ∩Y = ∅ and let G
be a causal diagram over the variables V. The effect P (y |
w;σX) is given by:

P (y|w;σX) =
∑

a\(y∪w)
Q[A;σX]

/∑
a\w

Q[A;σX] , (23)

where A is the set of all variables connected to Y (in-
cluding Y) by any path (regardless of the directionality) in
GσX[D]W, with D = An(Y ∪W)GσX .

Proof. As implied by eq. (22) the query only depends on
variables in D hence we can focus on the subgraph GσX[D].
The set A is defined in terms of GσX[D]W which is equal
to GσX[D] except for the absence of edges outgoing from
W, but have the same set of bidirected edges. Let A′ =
D \ A, then the definition of A and implies that there are
no bidirected arrows crossing between A and A′ in GσX

.
To witness suppose there exists A ∈ A, A′ ∈ A′ with a
bidirected edge between them. We have that some Y ∈ Y is
connected by some path to A, hence also connected to A′,
but then A′ has to be in A, a contradiction.

This mean that A and A′ share no c-component and
by (Tian and Pearl, 2002b, Lemma 2) we have that
Q[D;σX] = Q[A;σX]Q[A′;σX]. From Eq. (21) we can



see that Q[C;σX] is a function of Pa(C)GσX , which is de-
fined as the set of variables in C and their observable parents
in GσX

(all unobservable parents affecting variables in C are
being summed out). We want to claim that by definition of
A the sets Pa(A)GσX and Pa(A′)GσX may intersect only
on W. Suppose this is not the case, then there exists vari-
ables A ∈ A and A′ ∈ A′ sharing a parent B /∈W, but this
implies that some Y ∈ Y that is connected to A by defini-
tion is also connected to A′ by extension A ← B → A′ in
GσXW, a contradiction. Then let H = Pa(A)GσX \W and
H′ = Pa(A′)GσX \W and note that H∪H′ must be equal
to D \W.

Consider the denominator in Eq. (22):∑
d\w

Q[D;σX] =
∑
h,h′

Q[A;σX]Q[A′;σX] (100)

=

(∑
h′

Q[A′;σX]

)(∑
h

Q[A;σX]

)
,

(101)

where the last equality follows from the fact that Q[A′;σX]
is not a function of any variable in H while the same is true
for Q[A;σX] and H′. Since Y is contained in A by defini-
tion, it follows that

∑
d\(y∪w)

Q[D;σX] =

(∑
h′

Q[A′;σX]

)∑
h\y

Q[A;σX]

 .

(102)

Dividing Eq. (102) by (101) we get an expression equivalent
to Eq. (22) where the factors (

∑
h′ Q[A′;σX]) appearing in

numerator and denominator cancel out, and we are left with

P (y | w;σX) =

∑
h\yQ[A;σX]∑
hQ[A;σX]

. (103)

Next, we argue that H = A \W. First it is easy to see that
(A \W) ⊆ H, for the other side suppose for the sake of
contradiction that there exists a variable B ∈ H \ (A \W).
Then B is a parent of some variable in A ∈ A and is not in
W, but this mean thatB is connected toA in GσXW and has
to be in A, a contradiction. Therefore, we can further rewrite
Eq. (103) as

P (y | w;σX) =

∑
a\(y∪w)Q[A;σX]∑

a\wQ[A;σX]
. (104)

Lemma 2. Let A be defined relative to X,Y,W as in
lemma 1, then:

Q[A;σX] = Q
[
AX;σX

]
Q
[
A \AX

]
, (24)

where AX is the union of the c-components of GσX[A] con-
taining variables in X.

Proof. This follows immediately from (Tian and Pearl,
2002b, Lemma 2) since by definition AX do not share any
c-component with A.

Lemma 3. Let σZ indicate any intervention on Z and let
C ⊆ V. Then, Q[C] = Q[C;σZ] if C ∩ Z = ∅.

Proof. By definition of Q[C;σZ] (Eq. (21)) we have

Q[C;σZ](v)

=
∑

u(C)

∏
{i|Vi∈C}

P (vi | pai, ui;σZ)P (u(C);σZ),

(105)

since no variable in C is in Z every term P (vi |
pai, ui;σZ) = P (vi | pai, ui) and interventions cannot af-
fect the distribution of variables in U, hence P (u(C);σZ) =
P (u(C)). Replacing those terms, we obtain exactly the def-
inition of Q[C](v).

Lemma 4. Suppose Q[A;σX] is not identifiable from a
set of available distributions in a causal diagram G. Let
A1, A2 ∈ A such that there exists an edge A1 → A2 in
G. Then

∑
a1
Q[A] is not identifiable from the same input

either.

Proof. Let M1 and M2 be the two models witnessing the
non-identifiability of Q[A;σX], they agree on available
distributions, but for some value-assignment v′ we have
Q1[A;σX](v′) = α, Q2[A;σX](v′) = β with α 6= β.
Assume, without loss of generality that α > β. We will
extend a strategy used by (Huang and Valtorta, 2008) to
construct two models M ′1 and M ′2 where the domain of
A2 is DA2

× {0, 1}, where DA2
is the domain of A2 in

M1,M2. Let F (A1) be a probability function from DA1

to {0, 1}, such that P (F (a1) = i) > 0, i = 0, 1 and
P (F (a1) = 0) = 1 − P (F (a1) = 1). In M ′i , i = 1, 2
we define:

P
M ′i
i ((a2, k)|paa2 , ua2)=P

Mi(a2|paa2 , ua2)P (F (a1)=k).
(106)

And for Vj ∈ V \ {A2} let PM
′
i (vj |paj , uj) =

PMi(vj |paj , uj). We can verify that for any σZj ∈ Z

PM
′
1(v \ a2, (a2, k);σZj )

= QM
′
1 [V \ {A2}, (A2,K);σZj ](v \ a2, (a2, k)) (107)

= QM1 [V \ {A2}, (A2,K);σZj ](v)P (F (a1) = k)
(108)

= QM2 [V \ {A2}, (A2,K);σZj ](v)P (F (a1) = k)
(109)

= QM
′
2 [V \ {A2}, (A2,K);σZj ](v \ a2, (a2, k)) (110)

= PM
′
2(v \ a2, (a2, k);σZj ). (111)

Consider the assignment v′ \ {a2}, (a′2, 0), by construc-
tion we have

QM
′
i [A;σX](v′ \ {a2}, (a′2, 0))

= QMi [A;σX](v′)P (F (a′1) = 0). (112)



Let P (F (a′1) = 0) = 1/2 and P (F (a1) = 0) = (α− β)/4,
for a1 6= a′1. It yields:∑

a1

QM
′
i [A;σX](v′ \ {a1, a2}, (a′2, 0))

=
∑
a1

QMi [A;σX](v′ \ {a1, a2})P (F (a1) = 0) (113)

For M ′1 this means∑
a1

QM
′
1 [A;σX](v′ \ {a1, a2}, (a′2, 0))

= 1
2α+

(
α−β
4

) ∑
a1 6=a′1

QMi [A;σX](v′ \ {a1, a2}) (114)

> 1
2α (115)

As for M ′2:∑
a1

QM
′
1 [A;σX](v′ \ {a1, a2}, (a′2, 0))

= 1
2b+

(
a−b
4

) ∑
a1 6=a′1

QMi [A;σX](v′ \ {a1, a2}) (116)

< 1
2β + α−β

4 (117)

< 1
2α. (118)

Then,M ′1 andM ′2 are compatible with G, match in the avail-
able distributions and yield different

∑
a1
Q[A;σX].

Theorem 2. The effect P (y | w;σX) is identifiable if σ-
IDENTIFY (Alg. 1) does not fail. Moreover, the expression
returned is a valid estimand for the effect.

Proof. (if) σ-IDENTIFY starts by computing the set A as
defined in lemma 1, which define the c-factor Q[A;σX] that
determines the target query.

Next, it factorizes Q[A;σX] according to the c-
components of GσX[A] and tries to identify each one of them
individually from any of the available distributions when-
ever Ai ∩ X = ∅. Given P (V;σZ), if Ai ∩ Z = ∅, then
lemma 3 guarantees that Q[Ai;σZ] = Q[Ai] and by the
same lemma Q[Ai] = Q[Ai;σX]. To do this the algorithm
runs IDENTIFY with the graph and distribution that corre-
spond to σZ and stores the result when it succeeds.

For those Ai that contain variables in X, the algorithm
obtains them by using the replacement strategy correspond-
ing to the type of intervention (see discussion in the main
text).

Finally, by lemma 2 (in this manuscript) and lemma 2
in (Tian and Pearl, 2002b), it follows that as long as every
Q[Ai] was identified, their product is equal toQ[A;σX]. Fi-
nally, the algorithm employs equation 23 to return a correct
estimand for P (y | w;σX).

Complexity Analysis of σ-calculus
Let n = |V| and z = |Z|. Operations in σ-IDENTIFY
such as compute the set of ancestors and find the set of
C-components in a graph can be done in O(n2) time. The

number of C-components is at most n, hence the total num-
ber of times the for-loops in the algorithm could execute and
call Identify is nz. IDENTIFY (see (Tian and Pearl, 2002a;
Huang and Valtorta, 2006)) recursively reduces the input c-
factor at least by a variables each time, and the operations
used can be performed in O(n2); overall it takes O(n3) to
return an expression of FAIL. Consequently, σ-IDENTIFY
runs in O(n4z).


