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Abstract
The process of transporting and synthesizing experimental
findings from heterogeneous data-collections is central in the
empirical sciences. In the causal inference literature, this ap-
pears under the rubrics of causal effect identifiability (Pearl
1995) and transportability (Pearl and Bareinboim 2011). In
this paper, we generalize these settings and investigate the
problem of learning conditional causal effects from an arbi-
trary combination of observational and experimental distribu-
tions collected under different conditions and from heteroge-
neous domains. Specifically, we introduce a unified graphical
criterion that completely characterizes the conditions under
which conditional causal effects can be uniquely determined
from disparate data collections. Further, we develop an effi-
cient, sound, and complete algorithm that outputs an expres-
sion for the conditional effect whenever it exists, which syn-
thesizes available causal knowledge; if the algorithm aborts
deriving a formula, then such synthesis is provably impossi-
ble, unless further parametric assumptions are made. Finally,
we prove that Pearl’s do-calculus is complete for this task.

1 Introduction
The ability to translate experimental results of a study con-
ducted in one setting to another is a fundamental process
within the scientific method. Science would come to a stand-
still were it not for the ability to extrapolate results from
laboratory experiments to outside the laboratory, where the
purported causal claims should ultimately hold, i.e., the real
world. In biology, for example, we conduct experiments on
Bonobos in order to learn more about Homo Sapiens, even
though the latter is only related, but certainly not the same
as the former. The capability of generalizing causal knowl-
edge plays a critical role in machine learning as well, since
an intelligent system is trained in one environment — where
it is allowed to perform causal interventions — with the goal
of operating efficiently, and surgically, in a deployment site,
which is almost invariably different (Bareinboim and Pearl
2016; Pearl and Mackenzie 2018).

One natural question that arises in these challenging sce-
narios is what would allow scientists to believe that exper-
imental studies performed in one species could, at least in
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principle, be used to make causal claims about another dif-
ferent species? Also, how could engineers expect, or perhaps
hope, that an intelligent system trained in one environment
would operate successfully when deployed in a possibly dif-
ferent ground? The key observation here is that, while there
might exist glaring disparities across domains, some causal
mechanisms are shared, and owed to their invariances, they
would act as anchors allowing knowledge to be transported,
and causal learning to eventually take place (Pearl 2000;
Spirtes, Glymour, and Scheines 2001).

The fields of machine learning and artificial intelligence
provide the theoretical underpinnings to reason with causal
mechanisms so as to tackle the challenge of synthesiz-
ing experimental findings in a principled way. In particu-
lar, we build on the framework of structural causal mod-
els (SCMs) (Pearl 2000) to formalize this setting and sys-
tematically leverage the invariant features of the underly-
ing data-generating model. An increasingly large class of
problems regarding the synthesis of experimental findings
across domains has been studied in the last decades within
the SCM framework. For instance, the problem of identifia-
bility of causal effects has been investigated, which is con-
cerned with the conditions under which the causal effect of
a treatment variable (or set) X on an outcome variable (or
set) Y , usually written as P (Y |do(X)), can be determined
from the combination of the observational distribution and
qualitative understanding about the domain encoded in the
form of a causal diagram. A criterion known as the back-
door has been proposed (Pearl 1993), which provides a
formal, graphical justification for when causal effects can
be identified by the adjustment formula (and then propen-
sity score-IPW estimators). There exist a number of other
criteria developed to solve this problem (Galles and Pearl
1995; Pearl and Robins 1995; Kuroki and Miyakawa 1999;
Halpern 2000; Spirtes, Glymour, and Scheines 2001). Pearl
introduced do-calculus as a general algebraic solution to this
problem, which is applicable for when observational and/or
experimental distributions are available (Pearl 1995). Based
on this machinery, more general graphical and algorithmic
identifiability conditions were derived, which culminated in
complete characterizations (Tian 2002; Tian and Pearl 2002;
Shpitser and Pearl 2006b; Huang and Valtorta 2006; Shpitser



and Pearl 2006a; Bareinboim and Pearl 2012a; Pearl 2015;
Lee, Correa, and Bareinboim 2019).

More recently, the problem of generalizing causal dis-
tributions across heterogeneous domains1 has been formal-
ized within the SCM framework, which appeared under
the rubric of transportability (Pearl and Bareinboim 2011).
Transportability has initially considered whether experi-
ments coming from a source domain can be leveraged to
answer a query in a target domain, where the two domains
differ in some of their mechanisms (Bareinboim and Pearl
2012b). The transportability setting has then been general-
ized to allow multiple source domains, different set of ma-
nipulable variables per domain, or both (Bareinboim and
Pearl 2014). Transportability has been used in a number of
more applied settings, e.g., (Westreich and Edwards 2015;
Westreich et al. 2017; Lesko et al. 2017; Keiding and Louis
2018; Zhou et al. 2018); see also (Pearl and Mackenzie
2018; Pearl and Bareinboim 2019).

Despite the many advances achieved in this literature in
the last decade, each work addressed one of the following
aspects:21. (conditional) a causal query can be of a condi-
tional interventional probability instead of only marginal; 2.
(specification) available data can be of an arbitrary collec-
tion of observational and experimental distributions instead
of a restricted class (e.g., all combinations of experiments);
and 3. (heterogeneity) the data can come from a number of
heterogeneous domains.

The goal of this paper is to account for these three as-
pects simultaneously and ultimately provide a solution to the
most general version of transportability. Cohesively combin-
ing the disparate machinery (e.g., concepts, conditions, algo-
rithms) developed for these different instances of the trans-
portability problem turns out to be a challenging task since
they capture different aspects of the problem and operate at
distinct levels of abstraction; the main goal of this paper,
technically speaking, will be to put these results together un-
der a general, unifying umbrella. Specifically, our contribu-
tions are as follows: (1) We derive a unified, sufficient, and
necessary graphical criterion for determining whether condi-
tional interventional distributions (including unconditional
and observational distributions) in a target domain can be
uniquely determined from a set of observational and exper-
imental distributions spread throughout heterogeneous do-
mains; (2) We develop a sound and complete algorithm for
this problem. We then prove that the do-calculus is complete
for the task of general transportability.

1.1 Preliminaries
We use uppercase letters for variables and lowercase for the
corresponding values. We denote by XV the state space of V
where v ∈ XV . A bold letter represents a set. Calligraphic

1A number of special cases of this general treatment has been
studied in the literature in the empirical sciences, including external
validity (Campbell and Stanley 1963; Manski 2007), meta-analysis
(Hedges and Olkin 1985), quasi-experiment (Shadish, Cook, and
Campbell 2002), or heterogeneity (Morgan and Winship 2007).

2While it lies outside the scope of this paper to provide a survey
of this body of literature, for the sake of clarity, we provide a short
summary of the relationship of its main settings in Appendix.

letters are for mathematical structures such as graphs and
models. We use familial notation for relationships among
vertices in a graph: Pa(·), An(·), and De(·) represent par-
ents, ancestors, and descendants of variables (including its
argument as well). In this paper, we are interested in graphs,
induced from a SCM (to be defined formally), with both di-
rected and bidirected edges. The root set of a graph is a set
of vertices with no outgoing edge. Given a graph G, we use
V to represent the set of vertices in G in the current scope
if no ambiguity arises. Otherwise, we denote by V(G′) the
set of observed variables in G′. We denote by G[W] a sub-
graph induced on G by W, which consists of W and edges
among them. We define G \ Z as G[V \ Z]. We denote by
GX and GX edge-subgraphs of G with incoming edges onto
X and outgoing edges from X, respectively, removed. We
adopt set-related symbols for graphs, e.g., G′ ⊆ G denotes
G′ being a subgraph of G, or T ∪ H stands for the union of
two graphs T andH.

As mentioned, we use the language of SCMs (Pearl
2000, Ch. 7) as our basic semantical framework, which al-
lows us to represent observational and interventional dis-
tributions as well as different domains. Formally, a tuple
〈U,V,F, P (U)〉 defines a SCMM where i) U is a set of
unobserved variables; ii) V is a set of observed variables; iii)
F is a set of deterministic functions {fV }V ∈V for observed
variables, e.g., v ← fV (paV ,uV ) where PAV ⊆ V \ {V }
and UV ⊆ U; and iv) P (U) is a joint probability dis-
tribution over U. Intervening on X by fixing it to x, de-
noted by do(X = x) = do(x), in M creates a submodel
Mx = 〈U,V,Fx, P (U)〉 where Fx is F with fX replaced
by a constant x for every X ∈ X. The submodel Mx in-
duces an interventional distribution Px, which is also de-
noted by P (· | do(x)). A SCM induces a causal diagram
where its vertices correspond to V, directed edges represent
functional relationships as specified in F, and each of bidi-
rected edges portrays the existence of an unobserved con-
founder (UC) between the two vertices pointed by the edge.
We will make extensive use of the do-calculus, which is a
set of three rules that allow one to reason about invariances
across observational and experimental distributions. For all
the proofs and appendices, please refer to the full technical
report (Lee, Correa, and Bareinboim 2020).

2 Towards General Transportability
In this section, we formalize the notion of general trans-
portability and introduce some basic results. In particular,
we will consider heterogeneous domains (i.e., environments,
studies, or populations) Π = {π1, π2, . . . , πn}, where each
associates with a SCM compatible with a common causal
diagram G. We fix π1 as a target domain in which we are
interested in answering a causal query, and others are source
domains. Through out this paper, let ∗ = 1 to emphasize
the target domain, e.g., π∗ or P ∗. The distributions under
do(x) associated with πi will be denoted by P i

x. Following
the construction in (Bareinboim and Pearl 2012b), we for-
mally characterize structural heterogeneity across domains:

Definition 1 (Domain Discrepancy). Let πa and πb be do-
mains associated, respectively, with SCMs Ma and Mb
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Figure 1: Causal graphs colored to depict the discrepan-
cies between (a) a target domain and (b,c) two source do-
mains where ∆ = {∅, {X,Y }, {X}}, which induces S =
{SX , SY } where S2 = {SX , SY } and S3 = {SX} and (d)
a selection diagram G∆.

conforming to a causal diagram G. We denote by ∆a,b ⊆ V
a set of variables such that, for every V ∈ ∆a,b, there
might exist a discrepancy; either faV 6= f bV or P a(UV ) 6=
P b(UV ).

Further, the differences between the target and each of the
source domains is represented in G:

Definition 2 (Selection Diagram). Given a collection of do-
main discrepancies ∆ = {∆∗,i}ni=1 with regard to G =
〈V,E〉, let S = {SV | ∃ni=1V ∈ ∆∗,i} be selection vari-
ables. Then, a selection diagram G∆ is defined as a graph
〈V ∪ S,E ∪ {SV → V }SV ∈S〉.

We shorten ∆∗,i as ∆i to represent the differences
between the target and each source domain. We denote
domain-specific selection variables by Si = {SV }V ∈∆i ,
and the rest by S−i = S \ Si. Selection variables work like
switches selecting the domain of interest. The state space
of SV ∈ S is {1} ∪ {i | V ∈ ∆i ∈ ∆}. Therefore, a
selection diagram can be viewed as the causal diagram for
a unifying SCM3 representing heterogeneous SCMs where
Px(y | w, si = i, s−i = 1) = P i

x(y | w).
For example, we illustrate in Figs. 1a to 1c a common

causal graph G among three domains with different colors
to highlight discrepancies between the target and source do-
mains. This corresponds to ∆ = {∅, {X,Y }, {X}}, which
entails the selection diagram G∆ in Fig. 1d. We are now
ready to define the most general transportability instance
that will be investigated in this paper, namely:

Definition 3 (g-Transportability). Let G∆ be a selection di-
agram relative to domains Π = {πi}ni=1 with a target do-
main π∗. Let Z = {Zi}ni=1 be a specification of available
experiments, where Zi is the collection of sets of variables
for πi in which experiments on each set of variables Z ∈ Zi

can be conducted. Given disjoint sets of variables X, Y, and
W, the conditional causal effect P ∗x (y|w) is said to be g-

3One can construct a SCM M = 〈∪iU
i,V ∪

S,F,
∏

i P
i(Ui)〉 where F is the same as the one in M1

except X ∈ V such that SX ∈ S. For such a variable X ,
adopt X = fSX

X (PAX ,U
SX
X ), which selects the given domain’s

function as specified by SX .

transportable given 〈G∆,Z〉 if P ∗x (y|w) is uniquely com-
putable from PΠ

Z = {P i
z | z ∈ XZ,Z ∈ Zi ∈ Z} in any

collection of models that induce G∆.
The problem can be seen as asking about the existence of

a functor g that outputs a universal formula given 〈G∆,Z〉,
which takes PΠ

Z and returns P ∗x (y | w), i.e., ∃gP ∗x (y | w) =
g(G∆,Z)(PΠ

Z ). Again, considering the selection diagram in
Fig. 1d with Z = {∅, {{Y }}, {{X}}}, we can derive

P ∗x (y|w) =
P ∗x (y, w)

P ∗x (w)
=
P 3
x (y, w)

P ∗x (w)
=
P 3
x (y, w)

P 2
y (w)

(1)

To witness, note that the first equality follows from the defi-
nition of conditional probability, the second one is due to the
irrelevance of the different X mechanisms between π∗ and
π3 under do(x), and the last one is based on Rule 3 (remov-
ing do(x) and adding do(y)) together with W being indif-
ferent to the disparities on fX and fY between π∗ and π2.
The following lemma provides a way to determine whether
a query P ∗x (y|w) is g-transportable given 〈G∆,Z〉 based on
the selection diagram.
Lemma 1. A causal effect P ∗x (y|w) is g-transportable with
respect to 〈G∆,Z〉 if the expression Px(y|w,S) is reducible
to an expression in which every term of the form Pa(b|c,S′)
satisfies (S \ S′ ⊥⊥ B | C) in G∆ \ A, Si ∩ S′ = ∅, and
A ∈ Zi for some domain πi ∈ Π.

Proof. The condition implies that Px(y|w, s=1)
can be written as an expression with terms, e.g.
Pa(b|c, s′=1), and further entails that Pa(b|c, s′=1) =
Pa(b|c, s−i=1, si=i) = P i

a(b|c) for any πi such that
Si ∩ S′ = ∅. Since P i

a ∈ PΠ
Z , the expression uniquely

computes P ∗x (y|w) with PΠ
Z .

The previous example in Eq. (1) on Fig. 1 can be rewritten
by explicitly employing the selection variables to articulate
the applications of do-calculus and axioms of probability:

Px(y|w,S) =
Px(y, w|S)

Px(w|S)
=
Px(y, w|SY )

Px(w)
=
P 3
x (y, w)

P 2
y (w)

For instance, Px(y, w|SY ) = P 3
x (y, w) due to {SY } ⊆

S−3 = {SX , SY } \ {SX}. We next characterize non-g-
transportability of a conditional causal effect:
Lemma 2. A causal effect P ∗x (y|w) is not g-transportable
with respect to 〈G∆,Z〉, if there exist two SCMs compati-
ble with G∆ where both agree on PΠ

Z while disagreeing on
P ∗x (y|w).

Proof. Having two different values for the query P ∗x (y|w)
rules out the existence of a valid function mapping from
〈G∆,Z〉 to the conditional causal effect.

The conditional causal effect P ∗x (y|w) shown in Fig. 1
would not be g-transportable if π3 associates with an ob-
servational distribution without an experiment on X , i.e.,
Z3 = {∅}; or if its mechanism on W disagrees with π∗,
i.e., ∆3 = {W}. We will provide a graphical criterion
for the non-g-transportability of a query in Sec. 3 based
on Lemma 2, and devise a sound and complete algorithm
for the problem of g-transportability in Sec. 4 grounded on
Lemma 1 and the results in Sec. 3.



3 A Graphical Criterion for
Non-g-transportability

We present a graphical criterion which can tell whether, a
conditional causal effect is not g-transportable. We first ex-
amine the case of an unconditional causal effect (Sec. 3.1).
The results established for the unconditional case are foun-
dational in investigating the conditional one (Sec. 3.2).

3.1 Non-g-transportability of an Unconditional
Interventional Distribution

We investigate a graphical characterization of non-g-
transportability of an unconditional causal effect given
〈G∆,Z〉. We formally introduce essential notions devised in
the identifiability literature (Tian and Pearl 2002; Shpitser
and Pearl 2006b) with slight revisions. A subgraph of G is
called a C-component (Tian 2002; Tian and Pearl 2002) if
its bidirected edges form a spanning tree over all vertices
in the subgraph. A graph G can be decomposed into a set
of maximal C-components. We denote by C(G) the decom-
position of V with respect to maximal C-components. An
R-rooted C-forest is a C-component whose root set is R
and edges are minimal such that every vertex other than R
has one child and bidirected arcs form a spanning tree. A
pair of C-forests with an inclusive relationship, often de-
noted by 〈F ,F ′〉 such that F ′ ⊆ F , sharing the same roots
is called a hedge. If there exists an R-rooted hedge 〈F ,F ′〉
in G with R ⊆ An(Y)G\X, X ∩ F 6= ∅, and X ∩ F ′ = ∅,
then we say that 〈F ,F ′〉 is formed for P ∗x (y), which im-
plies that the same effect is not identifiable in G from P
(Shpitser and Pearl 2006b). For example, Fa in Fig. 2b is
a {Y1, R, Y2}-rooted C-forest. The subgraph made of this
root-set alone is also a {Y1, R, Y2}-rooted C-forest. That is,
the pair 〈Fa,Fa[{Y1, R, Y2}]〉 is a hedge, which is formed
for P ∗x1

(y1, y2) in G (but not for P ∗x1
(y1)).

Thicket is a graphical structure which affirms the non-
identifiability of P ∗x (y) with 〈G{∅}, {Z∗}〉 (i.e., a single do-
main with an arbitrary collection of experiments) (Lee, Cor-
rea, and Bareinboim 2019). We introduce the notion of s-
thicket, a generalization of a thicket to a heterogeneous set-
ting by taking selection variables into account:

Definition 4 (s-Thicket). Given 〈G∆,Z〉, an s-thicket T is
a minimal non-empty R-rooted C-component of G such that
for each Z ∈ Zi ∈ Z, either (a) ∆i ∩R 6= ∅, (b) Z∩R 6= ∅,
or (c) there exists F ⊆ T \Z where 〈F , T [R]〉 is a hedge. If
R ⊆ An(Y)G\X and every hedgelet of the hedges intersects
with X, we say an s-thicket T is formed for P ∗x (y) in G∆

with respect to Z.

Definition 5 (hedgelet decomposition). The hedgelet de-
composition H(〈F ,F ′〉) of a hedge 〈F ,F ′〉 is the collec-
tion of hedgelets {F(T)}T∈C(F\F ′) where each hedgelet
F(T) is a subgraph of F made of (i) F [V(F ′) ∪ T] and
(ii) F [De(T)F ] without bidirected edges.

An s-thicket is a superimposition of hedges sharing a
common root-set, where each hedge is also a superimpo-
sition of hedgelets. Intuitively speaking, if we encounter an
s-thicket T for P ∗x′(y′) in G, g-transporting P ∗x′(r), where

X′ = X∩T , is hindered because every existing experimen-
tal distribution either (a) exhibits discrepancies, (b) is based
on an intervention on the variables we wish to measure,
or (c) is not sufficient to pinpoint P ∗x′(r). Further, P ∗x (y)
is not g-transportable since the negative result for P ∗x′(r)
can be mapped to that for P ∗x′(y′) where Y′ ⊆ Y and
R ⊆ An(Y′)G\X.

Consider, for example, the causal graph G in Fig. 2a where
∆ = {∅, {B}} and Z = {{{C}}, {{X1}, {X3, R}}}. G
without R → Y2 is an s-thicket for P ∗x (y) with respect to
〈G∆,Z〉. First, an experiment on {X3, R} matches (b) in
Def. 4. Since the other two experiments do not match (a) nor
(b) in Def. 4, there should be two hedges which do not inter-
sect with C and X1, respectively (Fig. 2b and Fig. 2c). The
former, which disjoints with {C}, is also its only hedgelet.
The latter, which does not contain {X1}, is composed of
two hedgelets based on the C-component decomposition of
its top (i.e., the subgraph induced by removing its root-
set) C(Fb[{B,C,D,X2, X3}]) = {{B,C,X3}, {D,X2}}.
Now, we formally establish a connection between an s-
thicket and the non-g-transportability of a query:

Lemma 3. With respect to G∆ and Z, a causal effect P ∗x (y)
is not g-transportable if there exists an s-thicket T formed
for the causal effect.

Proof sketch. Treating multiple domains as if they are ho-
mogeneous, the existence of T entails the existence of
two models witnessing the non-g-transportability of P ∗x′(r),
for some X′ ⊆ X, from G{∅} and {

⋃
i Zi} (Lee, Cor-

rea, and Bareinboim 2019). However, the same models will
not necessarily agree on some of distributions available in
source domains. We incorporate selection variables into the
parametrization to make the two models agree on PΠ

Z while
still disagreeing on P ∗x′(r). The parametrization (Lee, Cor-
rea, and Bareinboim 2019) is designed to produce the same
distributions for the two models if at least one R ∈ R be-
comes independent to the UCs among R, which isn’t the
case for do(x). We modify each function for R ∈ R to re-
turn 0 when SR 6= 1.4 Consequently, the two models witness
the non-g-transportability of P ∗x′(r), and the result will en-
tail the same for P ∗x′(y′) in T ′, a graph where T is extended
by adding directed paths from R to Y′ ⊆ Y.

At this point, the non-existence of an s-thicket is a neces-
sary condition for the g-transportability of an unconditional
causal effect. In Sec. 4 we will further show that this is suf-
ficient too, by presenting an algorithm that returns a valid
formula for the target effect whenever no s-thicket exists
(Thm. 3). For the sake of a better presentation of the com-
pleteness of the graphical criterion for the conditional case in
the next section, we put a corollary below based on Lemma 3
and Thm. 3 in the next section:

Corollary 1. With respect to G∆ and Z, a causal effect
P ∗x (y) is not g-transportable if and only if there exists an
s-thicket T formed for the causal effect.

4One can replace the constant 0 to an R-specific unobserved
variables, which can be an (un)fair coin.



Y1 R Y2

X1
X2 X3

DB C

(a) G

Y1 R Y2

X1 X3

DB

(b) Fa

Y1 R Y2

X1
X2 X3

DB C

(c) Fb

Y1 R Y2

X1
X2 X3

B C

(d) Fb({B,C,X3})

Y1 R Y2

X1
X2 X3

D

(e) Fb({D,X2})

Figure 2: (a) A causal graph G, which, without R → Y2, forms an s-thicket for P ∗x (y) given ∆ = {∅, {B}} and Z =
{{{C}}, {{X1}, {X3, R}}}. The s-thicket is the superimposition of two hedges (b, c) where the latter further decomposed into
two hedgelets (d, e).

3.2 Non-g-transportability of a Conditional
Interventional Distribution

We proceed to the graphical criterion for the g-transportation
of P ∗x (y|w). We will assume that the query under consider-
ation is conditionally minimal in the sense that there is no
W ∈ W such that P ∗x (y|w) = P ∗x∪{w}(y|w \ {w}) by
virtue of Rule 2 of do-calculus. Otherwise, we can repeat-
edly apply Rule 2 and obtain an equivalent minimal expres-
sion P ∗x,w′(y|w \w′) (Cor. 1 (Shpitser and Pearl 2006a)).
The conditional minimality is graphically translated to the
existence of an active backdoor path from each of W ∈W
to some Y ∈ Y given W \ {W}. We present a major theo-
retical result which authorizes the delegation of the charac-
terization of a conditional causal effect to that of an uncon-
ditional one:
Theorem 1. Let every W∈W have a backdoor path to
Y in G\X active given W\{W}. A query P ∗x (y|w) is g-
transportable if and only if P ∗x (y,w) is g-transportable with
respect to 〈G∆,Z〉.

The sufficiency holds true since P ∗x (y|w) =
P ∗x (y,w)/

∑
y P
∗
x (y,w). As for the necessity, sup-

pose P ∗x (y,w) is not g-transportable. If P ∗x (w) is
g-transportable, then P ∗x (y|w) must be non-g-transportable,
otherwise a contradiction arises since P ∗x (y,w) would be
g-transportable as P ∗x (y|w)P ∗x (w). Then, it remains to
prove that P ∗x (y|w) is not g-transportable whenever P ∗x (w)
is not g-transportable with respect to 〈G∆,Z〉. Indeed, that
is the case, as follows:
Theorem 2. Let every W ∈W have a backdoor path to Y
in G \ X active given W \ {W}. A query P ∗x (y|w) is not
g-transportable if P ∗x (w) is not g-transportable with respect
to 〈G∆,Z〉.

Proof sketch. Let T ′ be a subgraph of G parametrized to
demonstrate the non-g-transportability of P ∗x′(w′) given
〈G∆,Z〉 (Lemma 3). Pick some W ∈ W′ that is also in
the root-set of T ′, and fix a minimal subgraph P ⊆ G \X
witnessing an active backdoor path from W to some Y ∈ Y
given W \ {W}. P also includes any directed path from an
active collider in P to its descendant in W \ {W}. We con-
struct two models for T ′ ∪ P while preserving the mech-
anisms in Lemma 3. We augment the exclusive-or-based
parametrization for variables in P so that W and Y are cor-
related given (W ∩ P) \ {W}. In the augmented models,
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Figure 3: A causal diagram G, and causal diagrams illustrat-
ing the phases of a non-g-transportability parametrization
for P ∗x (y|w). (b) an s-thicket for P ∗x (w) given P ∗, (c) the
s-thicket with an extension in red, and (d) a path-witnessing
subgraph (blue) augmented extended s-thicket.

the value of W is determined as the exclusive-or of two W s
computed in T ′ and in P . The resultant models will disagree
on P ∗x′(y|w′′) where W′′ is the subset of W in T ′ ∪ P .
Therefore, P ∗x (y|w) is not g-transportable with respect to
〈G∆,Z〉.

We provide an illustrative example in Fig. 3. For the
sake of brevity, we assume a single domain setting with
P ∗ available. Given a causal graph G (Fig. 3a) and P ∗,
an s-thicket T is formed for P ∗x (w) (Fig. 3b). Two mod-
els are first constructed to disagree on P ∗x (v, w1). Then,
the result is mapped to P ∗x (w) via a graph E (red), result-
ing in a parametrization for T ′ = T ∪ E (Fig. 3c). Pick
W1 ∈ W, which is the only W in the root set of T ′, then
find a backdoor path to Y given W \ {W1}. The path-
witnessing subgraph P ∈ G is shown in blue (Fig. 3d). A
separate parametrization for P is merged with that for T ′
via an exclusive-or on W1. Then, the two models disagree
on P ∗x (y|w).



Algorithm 1 GTR and GTRU, sound and complete g-
transportability algorithms.
1: function GTR(y,x,w,G,∆)

input: y, x, w: values for a query P ∗x (y|w); G: causal di-
agram; ∆: domain discrepancies. A specification of available
experiments Z, and the distributions for those experiments, PΠ

Z ,
are globally defined.
output: an estimator computing P ∗x (y|w).

2: if ∃W∈W(W ⊥⊥ Y |W \ {W})(G\X)W then
return GTR(y,x ∪ {w},w \ {w},G,∆).

3: else
return Q/

∑
y Q where Q← GTRU(y ∪w,x,G,∆).

4: function GTRU(y,x,G,∆)
output: an estimator computing P ∗x (y).

5: if ∃Z∈Zi∈Z(X = Z ∩V) ∧ (Si ⊥⊥ Y)G∆\X then
return P i

z\V,x(y).

6: if (V′ ← V \An(Y)G) 6= ∅ then
return GTRU(y,x \V′,G \V′, {∆i \V′ | ∆i ∈∆}).

7: if (V′ ← (V \X) \An(Y)G
X

) 6= ∅ then
return GTRU(y,x ∪ v′,G,∆).

8: if |C(G \X)| > 1 then
return

∑
v\(y∪x)

∏
C∈C(G\X) GTRU(c,v \ c,G,∆).

9: for πi ∈ Π such that (Si ⊥⊥ Y)G∆\X, for Z ∈ Zi such that
Z ∩V ⊆ X do

10: return ID(y,x\Z, P i
z\V,x∩Z,G \ (Z∩X)) unless FAIL

is returned.
11: throw FAIL

4 A Sound and Complete Algorithm for
g-Transportability

We present GTR (Alg. 1), a sound and complete algo-
rithm capable of solving g-transportability instances, which
smoothly and effectively combines ideas underlying in ID,
IDC, MZTR, and GID (algorithms in (Shpitser and Pearl
2006b; 2006a; Bareinboim and Pearl 2014; Lee, Correa, and
Bareinboim 2019)) and outputs an estimator for a given con-
ditional interventional query P ∗x (y|w) in a target domain
with respect to 〈G∆,Z〉, if feasible. The experiment specifi-
cation Z and the corresponding distributions PΠ

Z are defined
globally, and do not change with the specific invocation of
the algorithm. In contrast, variables V and selection vari-
ables S reflect graph G and discrepancies ∆, respectively,
relative to the arguments passed to the current execution of
the procedure.

We give a line by line description where symbols such as
G, V, X, Y, and W are to be interpreted relative to the
current arguments of the algorithm. At Line 2, GTR, re-
cursively transforms the given query using Rule 2 of do-
calculus to guarantee it is conditionally minimal (and sat-
isfies the requirement for Thm. 1). With this guarantee, the
algorithm (Line 3) delegates the identification of the query,
based on the definition of conditional probability, to GTRU,
which handles unconditional queries. Overall, GTRU trans-
forms the given unconditional query and divides the prob-
lem into the identification of (simpler) subqueries. Each sub-
problem is delegated to ID with a distribution P i

z under
some constraints on the domain πi and the experiments on
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Figure 4: (a) A selection diagram G∆ where ∆ =
{∅, {W1, Y }, {W2}} and Z = {∅, {∅}, {{X2}}}. (b,c,d)
Graphs encountered during the execution of GTR to g-
transport P ∗x (y|w).

Z ∈ Zi. Line 5, which is optional, checks whether an avail-
able distribution can be used to answer the query directly,
i.e., P i

z(y) = P ∗x (y), so as to return an estimator at an early
stage. Line 6 narrows the scope of the problem by excluding
variables that do not affect Y (Rule 3). Domain discrepan-
cies are updated accordingly, since selection variables out-
side the scope have no effect on Y. Line 7 maximizes the
intervention set, which helps solving the problem, based on
Rule 3. Line 8 breaks down the query into queries where
Y in each subquery forms a C-component (Tian and Pearl
2002). Line 9 examines whether some experimental distri-
bution P i

z ∈ PΠ
Z can be used to identify the query. If valid,

GTRU passes the query to ID with a slight modification of
it and graph, taking into account the shared intervention be-
tween Z and X. GTR runs in O(v4z) where v = |V| and
z =

∑
i|Zi| (see Appendix for details).

We offer a running example regarding the identifica-
tion of P ∗x (y|w) with a causal graph G (Fig. 3a), ∆ =
{∅, {W1, Y }, {W2}} (see G∆ in Fig. 4a with S2 and S3

in blue and red), and Z = {∅, {∅}, {{X2}}}, i.e., the tar-
get domain has no distribution available while π2 and π3

provide an observational distribution and an experiment on
X2, respectively. Given a query P ∗x (y|w), GTR investigates
whether there exists any W ∈ W that can be moved to
the interventional part of the query. Fig. 4b shows G \ X
where the existence of a backdoor path between W and Y
is figured out. Since W2 ← V ↔ Y and W1 ↔ V ↔ Y
given W2 as a descendant of the collider (V ), it proceeds to
identify P ∗x (y,w). GTRU attempts to refine the given graph
with the ancestors of {Y,W1,W2} (Line 6). Then, it checks
whether the intervention {X1, X2} is maximal. Next, it in-
vestigates the C-components of G \ X (Fig. 4b). There are
two C-components involving {W2} and {Y, V,W1}. Hence,
it factorizes the query to P ∗y,x,v,w1

(w2) and P ∗x,w2
(y, v, w1).

The first query encounters Line 6 and it is refined, i.e.,
P ∗y,x,v,w1

(w2) = P ∗v (w2) (Rule 3) with the graph in



Fig. 4c. The query will reach Line 10 since {SW2} ⊆
S−2 (Lemma 1) and, eventually, ID identifies P ∗v (w2) =
P 2(w2|v), which corresponds to Rule 2. The second query
passes conditions in Lines 5 to 9 since ({Y, V,W1} ⊥⊥ SW2

)
in G∆ \ {X2} (Fig. 4d). Then, it makes use of P 3

x2
, since

{X2} ⊆ X ∪ {W2}, to identify P ∗x,w2
(y, v, w1), which cor-

responds to identifying Q∗x1,w2
(y, v, w1) with Q3 = P 3

x2
in

G∆ \ {X2} (Bareinboim and Pearl 2012a).

Theorem 3. GTRU is sound and complete.

Proof. (soundness) Let a subscript ` denote variables and
values local to the function. The soundness of the algorithm
is partially proved (Lee, Correa, and Bareinboim 2019) ex-
cluding the case where distributions from the heterogeneous
source domains are utilized. It is sufficient to prove that
P ∗x`

(y`) = P i
x`

(y`) for Lines 5 and 9 where the identifi-
cation of P ∗x`

(y`) is delegated to that of P i
x`

(y`) with P i
z for

some Z ∈ Zi. By Lemma 1, P ∗x`
(y`) = Px`

(y` | S = 1).
Since (Si

` ⊥⊥ Y`) in G∆`

` \X` implies (Si ⊥⊥ Y`) in
G∆ \X`, the equality Px`

(y` | S = 1) = Px`
(y` | S−i =

1) holds true. Therefore, the soundness follows.
(completeness) We show that whenever GTRU fails to g-

transport a given query P ∗x (y), there exists an s-thicket for
the given query (Lemma 3). Given that GTRU imposes one
more condition (Si

`⊥⊥Y`) in G∆`

` \X` at Line 9 compared
to GID, those qualified experiments Z ∈ Zi ∈ Z can be
considered as experiments conducted in the target domain so
that the identification is reducible to GID given G with the
qualified experiments (Lee, Correa, and Bareinboim 2019).
Hence, when the algorithm fails to identify the query, there
exists a thicket for P ∗x (y) (Thm. 3 (Lee, Correa, and Barein-
boim 2019)). If every experiment Z satisfies items (b) and
(c) in Def. 4, then the thicket is an s-thicket. Otherwise, we
map the existence of a thicket T † to that of an s-thicket T
— it remains to show ∆i ∩ R 6= ∅ (item (a) in Def. 4).
First, there exists an R†-rooted thicket T † ⊆ G` forP ∗x`

(y`),
which is also for P ∗x (y). Since R† ⊆ An(Y`)G`\X`

=
V` \ X` and G`[V` \ X`] is a C-component (Line 8), the
thicket T † with its root set replaced with V` \X` is a valid
thicket. Then, due to Prop. 1 (below), the modified thicket is
an s-thicket for P ∗x (y) with respect to 〈G∆,Z〉.

Proposition 1. (Si ⊥⊥ Y)G∆\X at Line 9 is equivalent to
∆i ∩ (V \X) = ∅.
Corollary 2. GTR is sound and complete.

Proof. The soundness of GTR follows from the soundness
of GTRU (Thm. 3) and Rule 2. Its completeness follows
from the completeness of GTRU (Thm. 3) and Thm. 1.

Corollary 3. The rules of do-calculus together with stan-
dard probability manipulations are complete for establish-
ing g-transportability of conditional interventional distribu-
tions.

Proof. This is due to: (i) Rule 2 of do-calculus and the defi-
nition of conditional probability under intervention for tran-
sitioning a conditional query to an unconditional one; and

(ii) Rule 1 of do-calculus to determine whether to utilize the
source domains (n.b. the selection variables as a condition
as in Lemma 1 is implicit) along with the completeness of
do-calculus with respect to GID.

5 Conclusions
We investigated the challenge of learning conditional causal
effects through generalizing and synthesizing experimen-
tal findings from heterogeneous domains, which unified
many threads in the causal identifiability and transporta-
bility literature (Tian and Pearl 2002; Shpitser and Pearl
2006b; Huang and Valtorta 2006; Shpitser and Pearl 2006a;
Bareinboim and Pearl 2013b; 2013a; 2012a; 2014; Lee, Cor-
rea, and Bareinboim 2019). This setting has been called g-
transportability (Def. 3). Concretely, we developed a gen-
eral treatment to the g-transportability problem in two ways
— first, as a complete graphical criterion, which leads
to a novel parametrization strategy characterizing the g-
transportability of any causal query (Lemma 3, Thm. 1,
and Thm. 2); second, as an efficient algorithmic proce-
dure (GTR, Alg. 1, Thm. 3, and Cor. 2), which synthe-
sizes quantitative causal knowledge under the guidance of
qualitative and transparent assumptions encoded as a causal
graph. Further, we proved that Pearl’s do-calculus is com-
plete for this task (Cor. 3). We hope these new analytical
tools can help lower the barrier for the broader research
community to advance science through collaborative syn-
thesis of shared datasets and knowledge (Perrino et al. 2013;
Pearl and Mackenzie 2018).
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