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Abstract

Controlling for selection and confounding biases are two of the most challenging problems in the em-
pirical sciences as well as in artificial intelligence tasks. Covariate adjustment (or, Backdoor Adjustment)
is the most pervasive technique used for controlling confounding bias, but the same is oblivious to issues
of sampling selection. In this paper, we introduce a generalized version of covariate adjustment that
simultaneously controls for both confounding and selection biases. We first derive a sufficient and neces-
sary condition for recovering causal effects using covariate adjustment from an observational distribution
collected under preferential selection. We then relax this setting to consider cases when additional, un-
biased measurements over a set of covariates are available for use (e.g., the age and gender distribution
obtained from census data). Finally, we present a complete algorithm with polynomial delay to find all
sets of admissible covariates for adjustment when confounding and selection biases are simultaneously
present and unbiased data is available.

1 Introduction

One of the central challenges in data-driven fields is to compute the effect of interventions – for instance,
how increasing the educational budget will affect violence rates in a city, whether treating patients with a
certain drug will help their recovery, or how increasing the product price will change monthly sales? These
questions are commonly referred as the problem of identification of causal effects. There are two types of
systematic bias that pose obstacles to this kind of inference, namely confounding bias and selection bias.
The former refers to the presence of a set of factors that affect both the action (also known as treatment) and
the outcome [Pearl, 1993], while the latter arises when the action, outcome, or other factors differentially
affect the inclusion of subjects in the data sample [Bareinboim and Pearl, 2016].

The goal of our analysis is to produce an unbiased estimand of the causal effect, specifically, the probability
distribution of the outcome when an action is performed by an autonomous agent (e.g., FDA, robot),
regardless of how the decision would naturally occur [Pearl, 2000, Ch. 1]. For example, consider the graph
in Fig. 1(a) in which X represents a treatment (e.g., taking or not a drug), Y represents an outcome (health
status), and Z is a factor (e.g., gender, age) that affects both the propensity of being treated and the outcome.
The edges (Z,X) and (Z, Y ) may encode the facts ”gender affects how the drug is being prescribed” and
”gender affects recovery” respectively – for example, females may be more health conscious, so they seek
for treatment more frequently than their male counterparts and at the same time are less likely to develop
large complications for the particular disease. Intuitively, the causal effect represents the variations of X
that bring about change in Y regardless of the influence of Z on X, which is graphically represented in
Fig. 1(b). Mutilation is the graphical operation of removing arrows representing a decision made by an
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autonomous agent of setting a variable to a certain value. The mathematical counterpart of mutilation is
the do() operator and the average causal effect of X on Y is usually written in terms of the do-distribution
P (y | do(x)) [Pearl, 2000, Ch. 1].

The gold standard for obtaining the do-distribution is through the use of randomization, where the treat-
ment assignment is selected by a randomized device (e.g., a coin flip) regardless of any other set of covariates
(Z). In fact, this operation physically transforms the reality of the underlying population (Fig. 1(a)) into
the corresponding mutilated world (Fig. 1(b)). The effect of Z on X is neutralized once randomization is
applied. Despite its effectiveness, randomized studies can be prohibitively expensive, and even unattainable
in certain cases, either for technical, ethical, or technical reasons – e.g., one cannot randomize the cholesterol
level of a patient and record if it causes the heart to stops, when trying to assess the effect of cholesterol
level on cardiac failure.

An alternative way of computing causal effects is trying to relate non-experimentally collected samples
(drawn from P (z, x, y)) with the experimental distribution (P (y | do(x))). Non-experimental (often called
observational) data relates to the model in Fig. 1(a) where subjects decide by themselves to take or not
the drug (X) while influenced by other factors (Z). There are a number of techniques developed for this
task, where the most general one is known as do-calculus [Pearl, 1995]. In practice, one particular strategy
from do-calculus called adjustment is used the most. It consists of averaging the effect of X on Y over the
different levels of Z, isolating the effect of interest from the effect induced by other factors. Controlling for
confounding bias by adjustment is currently the standard method for inferring causal effects in data-driven
fields, and different properties and enhancements have been studied in statistics [Rubin, 1974, Robinson and
Jewell, 1991, Pirinen et al., 2012, Mefford and Witte, 2012] and AI [Pearl, 1993, Pearl, 1995, Pearl and Paz,
2010, Shpitser et al., 2010, Maathuis and Colombo, 2015, van der Zander et al., 2014].

Orthogonal to confounding, sampling selection bias is induced by preferential selection of units for the
dataset, which is usually governed by unknown factors including treatment, outcome, and their consequences.
It cannot be removed by a randomized trial and may stay undetected during the data gathering process, the
whole study, or simply never be detected1. Consider Fig. 1(e) where X and Y represent again treatment
and outcome, but S represents a binary variable that indicates if a subject is included in the pool (S=1
means that the unit is in the sample, S=0 otherwise). The effect of X on Y in the entire population
(P (y | do(x))) is usually not the same as in the sample (P (y | do(x), S=1)). For instance, patients that went
to the hospital and were sampled are perhaps more affluent and have better nutrition than the average person
in the population, which can lead to a faster recovery. This preferential selection of samples challenges the
validity of inferences in several tasks in AI [Cooper, 1995, Cortes et al., 2008, Zadrozny, 2004] and Statistics
[Little and Rubin, 1986, Kuroki and Cai, 2006] as well as in the empirical sciences [Heckman, 1979, Angrist,
1997, Robins, 2001].

The problem of selection bias can be addressed by removing the influence of the biased sampling mech-
anism on the outcome as if a random sample of the population was taken. For the graph in Fig. 1(d), for
example, the distribution P (y | do(x)) is equal to P (y | x, S=1) because there are not external factors that
affect X and the selection mechanism S is independent of the outcome Y when the effect is estimated for
the treatment X. There exists a complete non-parametric2 solution for the problem of estimating statistical
quantities from selection biased datasets [Bareinboim and Pearl, 2012], and also sufficient and algorithmic
conditions for recovering from selection in the context of causal inference [Bareinboim et al., 2014, Bareinboim
and Tian, 2015]. Whenever non-parametric recoverability is not feasible, a number of additional constraints
over the model can be considered, including assumptions relative to the query (e.g., odds ratio), the type
and dimensionality of the variables (e.g., discrete), and their topological relationships (e.g., IVs) [Didelez
et al., 2010, Bareinboim and Pearl, 2012, Evans and Didelez, 2015].

Both confounding and selection biases carry extraneous “flow” of information between treatment and

1[Zhang, 2008] noticed some interesting cases where detection is feasible in a class of non-chordal graphs.
2No assumptions about the about the functions that relates variables are made (i.e. linearity, monotonicity).
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Figure 1: (a) and (d) give simple examples for confounding and selection bias respectively. (b) represents
the model in (a) after an intervention is performed on X. (c) and (e) present examples where confounding
and selection bias can not be removed respectively. In (f) we can control for either confounding or selection
bias, but not for both unless we have external data on P (z).

outcome, which is usually deemed “spurious correlation” since it does not correspond to the effect we want
to compute on. Despite all the progress made in controlling these biases separately, we show that to estimate
causal effects considering both problems requires a more refined analysis. First, note that the effect of X on
Y can be estimated by blocking confounding and controlling for selection, respectively, in Figs. 1(a) and (d).
On the other hand, confounding cannot be removed in Fig. 1(c) nor it can be recovered from selection bias
in Fig. 1(e). Perhaps surprisingly, Fig. 1(f) presents a scenario where either confounding or selection can
be addressed separately (P (y|do(x)) =

∑
Z P (y|x, z)P (z) and P (z, y|do(x)) = P (z, y|do(x), S=1)), but not

simultaneously (without external data). As this example suggests, there is an intricate connection between
these two biases that disallow the methods developed for these problems of being applied independently and
then combined.

In this paper, we study the problem of estimating causal effects from models with an arbitrary structure
that involve both biases. We establish necessary and sufficient conditions that a set of variables should
fulfill so as to guarantee that the target effect can be unbiasedly estimated by adjustment. We consider two
settings – first when only biased data is available, and then a more relaxed setting where additional unbiased
samples of covariates are available for use (e.g., census data). Specifically, we solved the following problems:

1. Identification and recoverability without external data: The data is collected under selection
bias, P (v | S=1), when does a set of covariates Z allow P (y | do(x)) to be estimated by adjusting for
Z?

2. Identification and recoverability with external data: The data is collected under selection bias
P (v | S=1) and unbiased samples of P (t),T ⊆ V, are available. When does a set of covariates Z ⊆ T
license the estimation of P (y | do(x)) by adjusting for Z?

3. Finding admissible adjustment sets with external data: How can we list all admissible sets Z
capable of identifying and recovering P (y | do(x)), for Z ⊆ T ⊆ V?

2 Preliminaries

The systematic analysis of confounding and selection biases requires a formal language where the characteri-
zation of the underlying data-generating model can be encoded explicitly. We use the language of Structural
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Causal Models (SCM) [Pearl, 2000, pp. 204-207]. Formally, a SCM M is a 4-tuple 〈U, V, F, P (u)〉, where
U is a set of exogenous (latent) variables and V is a set of endogenous (measured) variables. F represents
a collection of functions F = {fi} such that each endogenous variable Vi ∈ V is determined by a function
fi ∈ F , where fi is a mapping from the respective domain of Ui ∪ Pai to Vi, Ui ⊆ U , Pai ⊆ V \Vi (where
Pai is the set of endogenous variables that are arguments of fi), and the entire set F forms a mapping
from U to V . The uncertainty is encoded through a probability distribution over the exogenous variables,
P (u). Within the structural semantics, performing an action X=x is represented through the do-operator,
do(X=x), which encodes the operation of replacing the original equation of X by the constant x and induces
a submodel Mx. For a detailed discussion on the properties of structural models, we refer readers to [Pearl,
2000, Ch. 7].

Structural Causal Models are, by convention, represented economically using directed acyclic graphs
with nodes for the measured variables and edges to represent the functional dependencies among them.
Bidirected, dashed arrows are used to indicate the presence of an unobserved confounder between the vari-
ables connected by it. In this paper, the usual family notation over the graphs is used, so that PaX , AnX
and DeX stand respectively for the set of parents, ancestors and descendants for a particular variable X.
Moreover, sets of variables are represented in bold. The causal effect of a set X when it is assigned a set of
values x, on a set Y when it is instantiated as y will be written as P (y | do(x)), which is a short hand no-
tation for P (Y=y | do(X=x)). Mainly, the problems presented operate on P (v), P (v | do(x)), P (v | S=1),
respectively, the observational, experimental, and selection-biased distributions.

Formally, the task of estimating a probabilistic quantity from a selection-biased distribution is known
as recovering from selection bias [Bareinboim and Pearl, 2012]. It is not uncommon for observations of a
subset of the variables over the entire population (unbiased data) to be available for use. Therefore, our
treatment consider two subsets of V, M,T ⊆ V, where M contains the variables for which data was collected
under selection bias, and T encompasses the variables observed in the overall population, without bias. The
absence of unbiased data is equivalent to have T = ∅.

3 Selection Bias with Adjustment

The main justification for the validity of adjustment for confounding comes under a graphical condition
called the “Backdoor criterion” [Pearl, 1993, Pearl, 2000], as shown below:

Definition 1 (Backdoor Criterion [Pearl, 2000]). A set of variables Z satisfies the Backdoor Criterion
relative to a pair of variables (X,Y ) in a directed acyclic graph G if:

(i) No node in Z is a descendant of X.

(ii) Z blocks every path between X and Y that contains an arrow into X.

The heart of the criterion lies in cond. (ii), where the set Z is required to block all the backdoor paths
between X and Y that generate confounding bias. Furthermore, cond. (i) forbids the inclusion of descendants
of X in Z, which intends to avoid opening new non-causal paths. For example, the empty set is admissible
for adjustment in Fig. 1(e), but adding S would not be allowed since it is a descendant of X and opens the
non-causal path X → S ← Y . On the other hand, even though S does not open any non-causal path in Fig.
1(f), the criterion does not allow it to be used for adjustment.

[Bareinboim et al., 2014] noticed that adjustment could be used for controlling for selection bias, in
addition to confounding, which lead to a sufficient graphical condition called Selection-Backdoor criterion.

Definition 2 (Selection-Backdoor Criterion [Bareinboim and Tian, 2015] ). A set Z = Z+ ∪ Z−, with
Z− ⊆ DeX and Z+ ⊆ V \DeX (where DeX is the set of variables that are descendants of X in G) satisfies
the selection backdoor criterion (s-backdoor, for short) relative to X,Y and M,T in a directed acyclic graph
G if:
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Figure 2: A graph that does not satisfy the s-backdoor criterion (respect to Z), but the adjustment formula
is recoverable and corresponds to desired causal effect.

(i) Z+ blocks all back door paths from X to Y

(ii) X and Z+ block all paths between Z− and Y , namely, (Z− ⊥⊥ Y | X,Z+)

(iii) X and Z block all paths between S and Y , namely, (Y ⊥⊥ S | X,Z)

(iv) Z ∪ {X,Y } ⊆M and Z ⊆ T

The first two conditions echo the extended-backdoor [Pearl and Paz, 2010]3, while cond. (iii) and (iv)
guarantee that the resultant expression is estimable from the available datasets. If the S-Backdoor criterion
holds for Z relative to X,Y and M,T in G, then the effect P (y | do(x)) is identifiable, recoverable, and
given by

P (y | do(x)) =
∑
Z

P (y | x, z, S=1)P (z) (1)

Note that the S-Backdoor is sufficient but not necessary for adjustment. To witness, consider the model
in Fig. 2 where Z = {Z1, Z2},M = {X,Y, Z1, Z2}, and T = {Z1, Z2}. Here, Z+ = ∅,Z− = {Z1, Z2}.
Condition (ii) in Def. 2 is violated, namely (Z1, Z2 ⊥6⊥ Y | X). Perhaps surprisingly, the effect P (y | do(x)) is
identifiable and recoverable, as follows:

P (y|do(x)) = P (y|x) (2)

= P (y|x)
∑

Z1

P (z1) (3)

=
∑

Z1

P (y|x, z1)P (z1) (4)

=
∑

Z1,Z2

P (y|x, z1, z2)P (z2|x, z1)P (z1) (5)

=
∑

Z1,Z2

P (y|x, z1, z2)P (z2|z1)P (z1) (6)

=
∑

Z1,Z2

P (y|x, z1, z2, S=1)P (z1, z2) (7)

(2) follows from the application of the second rule of do calculus and the independence (X⊥⊥Y )GX
. Equa-

tions (5),(6),(7) use the independences (Y⊥⊥Z1|X), (Z2⊥⊥X|Z1) and (S⊥⊥Y |X,Z1, Z2) respectively. The final
expression (7) is estimable from the available data.

Considering that Z = ∅ controls for confounding, adjusting for Z = {Z1, Z2} seems unnecessary. As it
turns out, covariates irrelevant for confounding control, could play a role when we compound this task with
recovering from selection bias (where Y will need to be separated from S).

3The extended-backdoor augments the backdoor criterion to allow for descendants of X that could be harmless in terms of
bias.
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4 Generalized Adjustment without External Data

Let us consider the case when only biased data P (v | S=1) over V is measured. Our interest in this section
is on conditions that allow P (y | do(x)) to be computed by adjustment without external measurements.

Consider the model G in Fig. 4(a). Note that Y and S are marginally independent in GX (the graph
after an intervention on X where all edges into X are not present). As for confounding, Z needs to be
conditioned on, but doing so opens a path between Y and S, letting spurious correlation from the bias to be
included in our calculation. It turns out that with a careful manipulation of the expression, both biases can
be controlled as follows:

P (y | do(x)) = P (y | do(x), S=1) (8)

=
∑

Z
P (y | do(x), z, S=1)P (z | do(x), S=1) (9)

=
∑

Z
P (y | x, z, S=1)P (z | S=1) (10)

Eq. (8) follows from the independence (Y ⊥⊥S | X) in the mutilated graph GX . Next we condition on Z and
(10) is valid by the application of the second rule of do-calculus to the first term and the third rule to the
second from (9). Note that every term in (10) is estimable from the biased distribution.

One important difference between the criterion presented in this section and the Backdoor criterion (both
the standard and extended versions) is the explicit consideration of sets of outcome and, specially, treatment
variables. This formulation requires a distinction between causal paths that contain a treatment variable
only at the beginning, and those that are intercepted by another variable of the same kind. The former type
of causal paths are called proper based in the following:

Definition 3 (Proper Causal Path [Shpitser et al., 2010]). Let X and Y be sets of nodes. A causal path
from a node in X to a node in Y is called proper if it does not intersect X except at the end point.

To illustrate the concept consider the graph in Fig. 3. In one hand, the path X1 →W1 → X2 →W2 → Y
is not proper because of the presence of X2 in between the endpoints. On the other hand, X1 → W3 → Y
and X2 → W2 → Y are proper. Note that, if X is composed of a single variable, then all causal paths are
proper. To build intuition around the necessity of the notion of proper causal path, consider the strategy

X1

W1

X2 W2

W3

Y

Figure 3: Graph with proper and non-proper causal paths

entailed in the backdoor adjustment: to block all non-causal paths and only the non-causal ones. In the
case of the path X1 → W1 → X2 → W2 → Y from before, the intervention on X2 cuts the flow of causal
information from X1 to Y through that path. As a consequence adjusting for W1 is not interfering with
the causal influence of X1 on Y , which is already nullified by the mentioned intervention on X2. Hence, a
carefree characterization may disallow the use of W1 for adjustment in similar scenarios, even when it may
help with the selection bias problem.
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Figure 4: Models where Z satisfies Def. 4

In the sequel, we introduce a graphical criterion to determine whether a set of covariates is admissible
for adjustment so as to simultaneously identify and recover a causal effect.

Definition 4 (Generalized Adjustment Criterion Type 1). A set Z satisfies the generalized criterion relative
to the pair X and Y in a causal model with graph G, augmented with the selection mechanism S if:

(a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper causal path from X to
Y.

(b) All non-causal paths between X and Y in G are blocked by Z.

(c) Y is d-separated from S given X under the intervention do(x), i.e., (Y ⊥⊥ S | X)GX
.

(d) Z can be partitioned into sets Z+,Z− such that Z+ = {Z ′ ∈ Z | (Z ′ ⊥⊥X | S)G
X(S)
} and

(Y ⊥⊥ Z− | X,Z+, S)GX
.

G
X(S)

is the graph where all edges into X ∈ X \AnS are removed, where AnS is the set of ancestors of the

variable S in G.

Conditions (a) and (b) echo the Extended Backdoor/Adjustment Criterion [Pearl and Paz, 2010, Shpitser
et al., 2010] and guarantee that Z is admissible for adjustment in the unbiased distribution. Condition (c)
requires the outcome Y to be independent of the selection mechanism S under intervention, without observing
any covariate Z, this is effectively saying that the causal effect is invariant to the selection mechanism.
Condition (d) ensures that either conditioning on S is not introducing spurious information from X to the
wights given by the covariates Z in the adjustment (for the Z+ subset), or that Y is insensitive to Z (as for
Z−). The following theorem claims the completeness of this criterion:

Theorem 1 (Generalized Adjustment Formula Type 1). Given disjoint sets of variables X,Y and Z in a
causal model with graph G. The effect P (y | do(x)) is given by

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z | S=1) (11)

in every model inducing G if and only if Z satisfies the generalized adjustment criterion type 1 relative to
the pair X,Y.

Proof. Suppose Z satisfy the criterion relative to X,Y. Then it can be decomposed into Z− and Z+ as
defined in condition (d). The causal effect can be derived as follows:

P (y | do(x)) = P (y | do(x), S=1) (12)

=
∑

Z+
P (y|do(x), z+, S=1)P (z+|do(x), S=1) (13)

=
∑

Z+
P (y | do(x), z+, S=1)P (z+ | S=1) (14)

=
∑

Z+
P (y | do(x), z+, S=1)

∑
Z−

P (z|S=1) (15)
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=
∑

Z
P (y | do(x), z, S=1)P (z | S=1) (16)

=
∑

Z
P (y | x, z, S=1)P (z | S=1) (17)

Eq. (12) follows from cond. (c). Conditioning on Z+ and applying the third rule of do-calculus using the
definition of Z+ in cond. (d) yield eq. (14). Summing over Z− in the second factor and adding Z− to the first
term using cond. (d) results in (16). Conditions (a) and (b) imply (Y ⊥⊥X | Z)GX

, furthermore, cond. (c)
ensures that observing S will not open any path between X and Y, because such path will either violate (c)
or have some X ∈ X as a collider which contradicts (b). Hence, (Y ⊥⊥X | Z, S)GX

holds and can be used
together with rule 2 of do-calculus to remove of the do operator, which results in the adjustment formula in
Eq. (11). The necessity part of the proof is presented in the appendix.

The set Z = {Z} for the model in Fig. 4(b) also satisfies Def. 4. Similarly to Fig. 4(a), if we control
for confounding and then try to remove the do-operator, it appears that the second term of the adjustment
expression cannot be estimated, because the independence (Z ⊥⊥ S) does not hold in G. Still, there exists
a derivation strategy encapsulated in Def. 4 / Thm. 1 that allow one to recover from both selection and
confounding biases.

5 Generalized Adjustment With External Data

A natural question that arises is whether additional measurements in the population level over the covariates
can help identifying and recovering the desired causal effect. The following criterion relaxes the previous
result by leveraging the unbiased data available.

Definition 5 (Generalized Adjustment Criterion Type 2). A set Z satisfies the generalized criterion relative
to X,Y, a set of variables measured under selection bias M and a set of variables observed in the overall
population T in a causal model with graph G augmented with the selection mechanism S if:

(a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper causal path from X to
Y.

(b) All non-causal paths between X and Y in G are blocked by Z.

(c) Y is d-separated from the selection mechanism S given Z and X, i.e., (Y ⊥⊥ S | X,Z).

(d) The variables are measured with bias (Z,X,Y ⊆ M) and the covariates are available without bias
(Z ⊆ T)

As in Def. 4, conditions (a) and (b) ensure Z is valid for adjustment without selection bias. Condition (c)
requires that the influence of the selection mechanism in the outcome is nullified by conditioning on X and Z.
Note that (c) is stated over the graph G and not GX as in the previous case. Actually, given cond. (b) they
are interchangeable because they may differ only when X is a collider in a path between S and Y. But, this
is also a non-causal path between X and Y that, by condition (b), should be blocked by Z anyways. Given
that, cond. (c) as in the definition for considering it simpler. Condition (d) guarantees that the adjustment
expression can be estimated from the available data. The following theorem claims the completeness of the
criterion for this case:

Theorem 2 (Generalized Adjustment Formula Type 2). Given disjoint sets of variables X,Y and Z, and
sets M,T in a causal model with graph G. In every model inducing G, the effect P (y | do(x)) is given by

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z) (18)

if and only if the set Z satisfies the generalized adjustment criterion type 2 relative to the pair X,Y.
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Figure 5: Models where the set Z satisfies Def. 5.

Proof. Suppose Z satisfy the conditions of the theorem relative to the pair X,Y and the sets M,T. By
conditions (a) and (b), the effect can be written as:

P (y | do(x)) =
∑

Z
P (y | x, z)P (z)

Note that S can be introduced to the first term by cond. (c), which entail Eq. (18). Cond. (d) ensures that
both terms in the expression are estimable from the available distributions. The necessity part of the proof
is presented in the appendix.

Fig. 5 presents two causal models that satisfies the previous criterion if measurements over Z = {Z1, Z2, Z3}
are available. To witness how the expression can be reached using do-calculus and probability axioms, con-
sider Fig. 5(a):

P (y|do(x)) =
∑

Z3

P (y | do(x), z3)P (z3 | do(x)) (19)

=
∑

Z3

P (y | x, z3)P (z3) (20)

=
∑

Z1,Z3

P (y | x, z1, z3)P (z1, z3) (21)

=
∑

Z
P (y | x, z)P (z2 | x, z1, z3)P (z1, z3) (22)

=
∑

Z
P (y | x, z, S=1)P (z) (23)

First conditioning on Z3 and removing do(x) using rule 3 of the do-calculus from the second term. Then,
conditioning the second term on Z1, moving the summation to the left, and introducing Z1 into the first
term results in (21). Eq. (22) follows from conditioning the first term on Z2, and finally removing X from
the second term using the independence (Z2 ⊥⊥X | Z1, Z3). Combining the last two distributions over the
Z’s and introducing the selection bias term using the independence (Y ⊥⊥ S | X,Z) results in (23), which
corresponds to the stated formula (18).

Model in Fig. 5(b) also satisfies the type 2 criterion and illustrates how this can be applied in cases where
X and Y are sets of variables.

6 Finding Admissible Sets for Generalized Adjustment

An obvious extension to the problem is how to systematically list admissible sets for adjustment, using the
criteria discussed in the previous sections. This is specially important in practice where factors such as
feasibility, cost, and statistical power relate to the choosing of a covariate set.
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In order to perform this kind of task efficiently, [van der Zander et al., 2014] introduced a transformation
of the model called the Proper Backdoor Graph and formulate a criterion equivalent to the Adjustment
Criterion:

Definition 6 (Proper Backdoor graph). Let G = (V,E) be a DAG, and X,Y ⊆ V be pairwise disjoint

subsets of variables. The proper backdoor graph, denoted as GpbdXY, is obtained from G by removing the first
edge of every proper causal path form X to Y.

Definition 7 (Constructive Backdoor Criterion (CBD)). Let G = (V,E) be a DAG, and X,Y ⊆ V be
pairwise disjoint subsets of variables. The set Z satisfies the Constructive Backdoor Criterion relative to
(X,Y) in G if:

i) Z ⊆ V \Dpcp(X,Y) and

ii) Z d-separates X and Y in the proper backdoor graph GpbdXY.

Where Dpcp(X,Y) = De((DeX(X) \X) ∩AnX(Y ))

The set Dpcp(X,Y) is exactly the set of nodes forbidden by the first condition in both of the criteria

given in this paper. Moreover, GpbdXY only contain X,Y paths that need to be blocked. The following lemmas
and theorem allow the use of the algorithmic framework from [van der Zander et al., 2014] to solve instances
of the question posed by the type 2 criterion.

Lemma 3 (Constructive Backdoor =⇒ Generalized Adjustment Type 2). Any set Z satisfying the CDB

applied to Gpbd(X∪S)Y and Dpcp(X ∪ S,Y) ∪ (V \ T) relative to X,Y in G also satisfies the Generalized

Adjustment Criterion type 2.

Proof. By the equivalence between the CBD criterion and the adjustment criterion, we have that Dpcp(X,Y)
is exactly the set of nodes forbidden by cond. (a) of the type 2 criterion, so

Dpcp(X ∪ S,Y) = De((DeX,S(X ∪ {S}) \ (X ∪ S)) ∩AnX,S(Y ))

Since S has no descendants, DeX,S(X ∪ {S}) = DeX(X) ∪ S and AnX,S(Y ) = AnX(Y ). As a consequence

Dpcp(X ∪ S,Y) = Dpcp(X,Y) implying cond. (a) of Def. 5.

Gpbd(X∪S)Y has all non-causal paths from X to Y present in GpbdXY, therefore, if Z block all non-causal paths

in the former, it will do in the latter satisfying condition (b).

Every S – Y path may or may not contain X. If not, Z should block it in Gpbd(X∪S)Y. In the latter case,

the subpath from X to Y is either causal or non-causal. If it is causal Z will not block it, but the S-Y path
will be blocked by X. If the subpath is non-causal Z should block it, therefore, the larger path is blocked
too. This argument implies condition (c). Since CBD holds for Dpcp(X ∪ S,Y) ∪ (V \T) every element in
Z must belong to T satisfying condition (d).

Lemma 4 (Generalized Adjustment Type 2 =⇒ Constructive Backdoor). Any set Z satisfying the Gen-
eralized Adjustment Criterion type 2 relative to X,Y in G also satisfies the constructive backdoor criterion
applied to Gpbd(X∪S)Y and Dpcp(X ∪ S,Y) ∪ (V \T).

Proof. By lemma 3, Dpcp(X ∪ S,Y) = Dpcp(X,Y), which combined with condition (d) implies condition
(i) of the CBP.

By cond. (b) every non-causal path from X to Y is blocked by Z and all paths from S to Y (which are
always non-causal when S is treated as an X) are blocked by Z,X by cond. (c). Those two facts together
imply cond. (ii) of the CBD.
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Figure 6: (a) shows a causal model and (b) the proper backdoor graph associated with it relative to X ∪ S
and Y . The gray nodes in (b) represents variables in Dpcp.

Theorem 5 (Generalized Adjustment Type 2 ⇔ Constructive Backdoor). A set Z satisfies the Generalized

Adjustment Criterion type 2 relative to X,Y in G if and only if it satisfies the CBC applied to Gpbd(X∪S)Y and

Dpcp(X ∪ S,Y) ∪ (V \T).

Proof. It follows immediately from lemmas 3,4.

Thm. 5 allows us to use the ListSep procedure [van der Zander et al., 2014] to list all the valid sets for
the generalized adjustment type 2. The algorithm guarantees O(n(n+m)) polynomial delay, where n is the
number of nodes and m is the number of edges in G (see [Takata, 2010]). That means that the time needed
to output the first solution or indicate failure, and the time between the output of consecutive solutions, is
O(n(n+m)).

To provide the reader an intuition of how the algorithm works, consider the graph in Fig. 6(a) and its
associated constructive backdoor graph in (b). W is a “forbidden node” in the sense that it cannot be used
for adjustment and for this example is the only element in Dpcp(X, Y ) assuming that unbiased measurement
on the covariates Z1, Z2 and Z3 are available (i.e. {Z1, Z2, Z3} ⊆ T). The algorithm ListSep will output
every set of variables that d-separates X ∪ S from Y in the proper backdoor graph that does not contain
any node in Dpcp(X, Y ).

7 Conclusions

We provide necessary and sufficient conditions for identification and recoverability from selection bias of
causal effects by adjustment, applicable for data-generating models with latent variables and arbitrary struc-
ture in non-parametric settings. Def. 4 and Thm. 1 provide a complete characterization of identification and
recoverability by adjustment when no external information is available. Def. 5 and Thm. 2 provide a com-
plete graphical condition for when external information on a set of covariates is available. Thm. 5 allowed
us to list all sets that satisfies the last criterion in polynomial-delay time, effectively helping in the decision
of what covariates need to be measured for recoverability. This is especially important when measuring a
variable is associated with a particular cost or effort. Despite the fact that adjustment is neither complete
nor the only method to identify causal effects, it is in fact the most used tool in the empirical sciences. The
methods developed in this paper should help to formalize and alleviate the problem of sampling selection
and confounding biases in a broad range of data-intensive applications.
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A Appendix: Proof of the theorems

In order to prove the necessity of the criteria presented in the paper, it is imperative to construct Structural
Causal Models (SCM) that serve as counter-examples to the identifiability or recoverability of the causal
effect, whenever the set of covariates Z fails to satisfy the conditions relative to the pair X,Y. The following
lemmata will be useful to construct such models. The first one, lemma 6 licenses the the direct specification
of the conditional distributions of any variable given its parents, in accordance to the causal diagram G.

Lemma 6 (Family Parametrization). Let G be a causal diagram over a set V of n variables. Consider also,
a set of conditional distributions P (vi | paVi

), 1 6 i 6 n such that PaVi
is the set of nodes in G from which

there are outgoing edges pointing into Vi. Then, there exists a model M compatible with G that induces
P (v) =

∏n
i=1 P (vi | paVi

).

Proof. (By construction) For every Vi define any ordering on the values of its domain, and let v
(j)
i refer to the

jth value in that order. Also, define a continuous unobservable variable Ui ∼ U [0, 1] (uniformly distributed
in the interval [0, 1]) for every variable Vi ∈ V. Then, construct a SCM M = 〈U,V,F , P (u)〉 where:

• V is the same set of observables in G

• U =
⋃n
i=1 U

′
i

• F =
{
fi(paVi

, ui) = infj

{∑j
k=1 P (v

(j)
i | paVi

) > ui

}
, 1 6 i 6 n

}
• Ui ∼ U [0, 1], 1 6 i 6 n

At every variable Vi, given a particular configuration of PaVi , M simulates its value using the distribu-
tion P (vi | paVi

). By the Markov property, the joint distribution will be equal to the product of those
distributions.

The following lemma, permits the construction of a SCM M compatible with a causal diagram G, using
another model compatible with a related, but different, causal diagram G′ where some arrows in a chain of
variables have the reverse direction.

Lemma 7 (Chain Reversal). Let G be a causal diagram containing a chain R` → R`−1 → . . .→ R1 → T →
W1 → . . .→Wk−1 →Wk, for two constants k, `, where the only edge incoming to R`−1, . . . , R1, T,W1, . . . ,Wk

is the one in the chain, and R` has no parents. Then, for any SCM M compatible with G, there exists a
model M ′ compatible with a causal diagram G′ where the chain of variables mentioned before, is replaced by
a chain of the form R` ← Rk−1 ← . . . ← R` ← T → W1 → . . . → Wk−1 → Wk. Moreover, M ′ compatible
with any observational distribution P (v) induced by M .

Proof. (By construction) Given M and any probability distribution P (v) induced by it, compute the joint
distribution P (r1, . . . , r`, t). Construct a new model M ′ with the same set of observable variables and
identical functions for all variables but for R1, . . . , R`, T . For those, assign the functions fRi

(ri−1, URi
), 1 6

i 6 `− 1 as in lemma 6. Also, let fR`
(UR`

) = UR`
, P (UR`

) = P (r`). By lemma 6 the sub-models composed
of R1, . . . , R`, T in M ′ and M produce the exact same distribution and since the set of parents and function
for every other part of the model are exactly the same the overall distribution is identical.

Finally, the following lemma allows to simplify the parametrization of an arbitrarily long chain of binary
variables.
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Lemma 8 (Collapsible Path Parametrization). Consider a causal diagram G and a probability distribution
P (v) induced by any SCM compatible with G. If G contains a chain W0 → W1 → . . . → Wk, where each
Wi represents a binary random variable, for every 1 6 i 6 k the only incoming edge to Wi is from Wi−1,
and every conditional distribution P (wi | wi−1) = p, P (wi | wi−1) = q, for some 0 < p, q < 1. Then, the

conditional distribution P (wk | w0) = q−(p−1)(p−q)k
q−p+1 , P (wk | w0) = q−q(p−q)k

q−p+1 .

Proof. Since W0, . . . ,Wk is a chain, the value of Wk is a function of W0 when all other W1, . . . ,Wk−1 are
marginalized. All Wi, 1 6 i 6 k are independent of any other variable given W0. Therefore, the distribution
P (wk | w0) is equal to

∑k−1
i=1

∏k
i=1 P (wi | wi−1), because any other variable can be removed from any product

in this expression and summed out. This distribution can be calculated as the product of 2x2 matrices

corresponding to the conditional distributions P (wi | wi−1) when encoded as WM =

[
p q

1− p 1− q

]
. The

product of k of such matrices is readily available if WM is decomposed using its eigenvalues {1, p − q} and

eigenvectors
{[

q
(1−p) ,−1

]
, [1, 1]

}
:

P (wk | w0) =

k−1∑
i=1

k∏
i=1

P (wi | wi−1) = (WM )k =

[
q−(p−1)(p−q)k

q−p+1
q−q(p−q)k
q−p+1

1− q−(p−1)(p−q)k
q−p+1 1− q−q(p−q)k

q−p+1

]
(24)

A.1 Proof for the First Criterion

Below, the first criterion is restated, and the proof of the associated theorem is given in full:

Definition 4 (Generalized Adjustment Criterion Type 1). A set Z satisfies the generalized criterion relative
to the pair X and Y in a causal model with graph G, augmented with the selection mechanism S if:

(a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper causal path from X to
Y.

(b) All non-causal paths between X and Y in G are blocked by Z.

(c) Y is d-separated from S given X under the intervention do(x), i.e., (Y ⊥⊥ S | X)GX
.

(d) Z can be partitioned into sets Z+,Z− such that Z+ = {Z ′ ∈ Z | (Z ′ ⊥⊥X | S)G
X(S)
} and

(Y ⊥⊥ Z− | X,Z+, S)GX
.

G
X(S)

is the graph where all edges into X ∈ X \AnS are removed, where AnS is the set of ancestors of the

variable S in G.

Theorem 1 (Generalized Adjustment Formula Type 1). Given disjoint sets of variables X,Y and Z in a
causal model with graph G. The effect P (y | do(x)) is given by

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z | S=1) (11)

in every model inducing G if and only if Z satisfies the generalized adjustment criterion type 1 relative to
the pair X,Y.

Proof. (if) Suppose Z satisfy the the conditions of the theorem relative to the pair X,Y. Then Z can be
partitioned into Z− and Z+ as in Def. 4. The causal effect is derived as follows:
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First, by condition (c), (Y ⊥⊥ S | X)GX
and S can be introduced into the expression:

P (y | do(x)) = P (y | do(x), S=1) (25)

Conditioning on Z+, it becomes:

P (y | do(x)) =
∑
Z+

P (y | do(x), z+, S=1)P (z+ | do(x), S=1) (26)

Cond. (d), (Z+ ⊥⊥X | S)G
X(S)

, and rule 3 of the do-calculus allow the removal of do(x) from the second term

of the previous expression

P (y | do(x)) =
∑
Z+

P (y | do(x), z+, S=1)P (z+ | S=1) (27)

Summing over Z− in the second factor yields

P (y | do(x)) =
∑
Z+

P (y | do(x), z+, S=1)
∑
Z−

P (z | S=1) (28)

The summations can be put together, and by cond. (d), (Y ⊥⊥ Z− | X,Z+, S)GX
holds true. Then, the

variables in Z− can be introduced into the first factor,

P (y | do(x)) =
∑
Z

P (y | do(x), z, S=1)P (z | S=1) (29)

Conditions (a) and (b) imply (Y ⊥⊥X | Z)GX
, furthermore condition (c) ensures that observing S will not

open any path between X and Y, because such path will either violate (c) or have some X ∈ X as a collider
which contradicts (b). Hence, (Y ⊥⊥X | Z, S)GX

holds and can be used together with rule 2 of do-calculus
to remove of the do() operator from the first factor of eq. (29), which results in the adjustment formula

P (y | do(x)) =
∑
Z

P (y | x, z, S=1)P (z | S=1) (30)

(Only if) This direction is proved using the contrapositive. Suppose conditions (a) and (b) do not hold,
then for any model compatible with GS , which is also compatible with G, the adjustment formula is equal
to
∑

Z P (y | x, z)P (z). But by the adjustment criterion [Shpitser et al., 2010] this expression will not be
equal to P (y | do(x)).

For conditions (c) and (d), counter examples for the identifiability and recoverability of the causal effect
are shown. In every case, let V represent all variables in the graph except for the selection mechanism S,
and Q refer to the adjustment formula as in (30). We construct two Structural Causal Models (SCM) M1

and M2, that induce probability distributions P1 and P2 respectively. Both, models will be compatible with
G, and they will agree in the probability distribution under selection bias

P1(v | S=1) = P2(v | S=1) (31)

but Q1 in the first model provides a different distribution than Q2 in the second model. Let M1 be compatible
withG andM2 withGS (inM2, S is independent from all other variables) such that (V⊥⊥S)P2 . Recoverability
should hold for any parametrization, hence without loss of generality, all variables are assumed to be binary.
The construction parametrizes P1 through its factors (as in lemma 6) and then parametrizes P2 to enforce
(31). As a consequence, (31) is also equals to P2(v).
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Suppose condition (c) does not hold, then, there is an open path between Y and S in GX . Without loss
of generality, our attention can be directed into the particular Y ′ ∈ Y not satisfying the condition, and on
the causal effect for Y ′. To do this, the constructed model will have every variable in Y \ {Y ′} disconnected
from the graph, more precisely (Y \ {Y ′} ⊥⊥V) holds, so that:

P (y | do(x)) =
∑
Z

P (y | x, z)P (z)

=
∏
Y

∑
Z

P (y | x, z)P (z)

=

 ∏
Y\Y ′

P (y)

∑
Z

P (y′ | x, z)P (z)

= γ
∑
Z

P (y′ | x, z)P (z)

where γ represents the product of the marginal distribution of the remaining Y \ {Y ′}.

The following are the cases for which Y ′ may violate cond. (c). Figure 7 illustrate every case for easier
reference.

case 1: Y ′ ∈ PaS
Let W be the set of nodes connecting X and Y ′ with directed paths. Consider the induced subgraph
G′ where all nodes in V \ {X,W, Y ′, S} are disconnected from {X,W, Y ′, S}. It must be the case
that Z and W are disjoint, else condition (a) is violated. Consequently, every Z is disconnected, and
(Z⊥⊥ Y ′)P1

holds. M1 and M2 are constructed from G′, the adjustment formula in the second model
can be expressed as:

Q2 = γ
∑
Z

P2(y′ | x, z)P2(z)

= γ
∑
Z

P1(y′ | x, z, S=1)P1(z | S=1)

= γ
∑
Z

P1(y′ | x, S=1)P1(z | S=1)

= γP1(y′ | x, S=1)

= γ
P1(y′,x, S=1)∑
Y ′ P1(y′,x, S=1)

= γ
P1(S=1 | y′)P1(y′ | x)

P1(S=1 | y′)P1(y′ | x) + P1(S=1 | y′)P1(y′ | x)

Using lemma 6, let P1(S=1 | y′) = α and P1(S=1 | y′) = β with 0 < α, β < 1 and α 6= β. Proceed
with lemma 8 (p = q = 1/2) to define P (y′ | x) = 1/2. The previous expression becomes:

Q2 = γ
α

α+ β

Following a similar derivation it can be established that Q1 = γ/2 which is never equal to Q2 in this
parametrization.

case 2: There is a directed path p from Y ′ to S without any Z.
Let R be the parent of S in such path, let W1 be the set of nodes between X and Y ′ as in the previous
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Figure 7: Cases considered for the necessity of condition (c) in the proof for Thm. 1. Dotted directed arrows
indicate chains of arbitrary length in the graph.
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case. Similarly let W2 be the variables in the path from Y ′ to R. Now, consider the graph G′ where all
nodes except for {X,W1, Y

′,W2, R, S} are disconnected from {X,W1, Y
′,W2, R, S}. Proceeding as

in the previous case, with the consideration that Z is disconnected from the rest of the graph, yields:

Q2 = γP1(y′ | x, S=1) = γ
P1(y′,x, S=1)

P1(x, S=1)

The numerator can be rewritten as:

P1(y′,x, S=1) =
∑
R

P1(y′,x, r, S=1)

=
∑
R

P1(x)P1(y′ | x)P1(r | y′)P1(S=1 | r)

Factorizing the denominator analogously, the term P1(x) is the same and can be cancelled out, then
Q2 becomes:

Q2 = γ
P1(y′ | x)

∑
R P1(r | y′)P1(S=1 | r)∑

Y ′ P1(y′ | x)
∑
R P1(r | y′)P1(S=1 | r)

Using lemma 8 to set P1(r | y′) = 1/2+ε/2, P1(r | y′) = 1/2−ε/2 where ε = (1/5)k (using p = 3/5, q =
2/5), and defining P (S=1 | r) = 2/3 and P (S=1 | r) = 1/2 leads to Q2 = γ(1/2 + ε/14) and Q1 = γ/2
which are never equal.

case 3: There is a directed path p from Y ′ to S that contains some Z0 ∈ Z
Let R be the parent of S in such path. It can be assured that, X and Y ′ are not connected by
any causal path, otherwise Z0 violates condition (a). Let W1 be the nodes in the subpath between
Y ′ and Z0, and W2 those in between Z0 and R. Consider the graph G′ where all nodes except for
{X, Y ′,W1, Z0,W2, R, S} are disconnected from {X, Y ′,W1, Z0,W2, R, S}.
Every Z′ = Z \ {Z0} is disconnected from the rest of the graph, then:

Q2 = γ
∑
Z

P1(y′ | x, z, S=1)P1(z | S=1)

= γ
∑
Z0

∑
Z′

P1(y′ | x, z0, z′, S=1)P1(z0, z
′ | S=1)

= γ
∑
Z0

P1(y′ | x, z0, S=1)P1(z0 | S=1)

= γ
∑
Z0

P1(y′ | x, z0)P1(z0 | S=1) (Y ′ ⊥⊥ S | X, Z0)P1

= γ
∑
Z0

P1(y′,x, z0)∑
Y ′ P1(y′,x, z0)

P1(z0 | S=1)

The numerator of the fraction in the last expression is equal to:

P1(y′,x, z0) = P1(x)P1(y′)P1(z0 | y′)

A similar factorization can be employed for the denominator, as well as for Q1. The factor P1(x)
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appears in both parts of the fractions and can be canceled:

Q1 = γ
∑
Z0

P1(y′)P1(z0 | y′)∑
Y ′ P1(y′)P1(z0 | y′)

P1(z0)

Q2 = γ
∑
Z0

P1(y′)P1(z0 | y′)∑
Y ′ P1(y′)P1(z0 | y′)

P1(z0 | S=1)

Now, P1(z0) and P1(z0 | S=1) are derived in similar terms:

P1(z0) =
∑
Y ′

P1(z0, y
′) =

∑
Y ′

P1(y′)P1(z0 | y′)

P1(z0 | S=1) =
P1(z0, S = 1)

P1(S = 1)
=
P1(S = 1 | z0)

∑
Y ′ P1(y′)P1(z0 | y′)

P1(S = 1)

Replacing P1(z0) and P1(z0 | S=1) in Q1 and Q2, then simplifying:

Q1 = γ
∑
Z0

P1(y′)P (z0 | y′) = γP1(y′)

Q2 = γ

∑
Z0
P1(y′)P1(z0 | y′)P1(S=1 | z0)

P1(S = 1)
= γ

P1(y′, S=1)

P1(S = 1)
= γ

P1(y′)P1(S=1 | y′)∑
Y ′ P1(S=1 | y′)P1(y′)

The term P1(S=1 | y′) =
∑
R P1(S=1 | r)P1(r | y′). Lemma 8 can be employed exactly as in the

previous case, and P1(y′) can be defined directly since it has no parents, for instance P1(y′) = 1/2,
then the queries end up as:

Q1 = γ 1
2 Q2 = γ

(
1
2 + ε

14

)
Which are never equal.

case 4: There is a path p connecting Y ′ and S that goes through and ancestor of both, and does not contain
any node in Z.
Let N be the closest common ancestor of Y ′ and S. Let R be the parent of S and Q the parent of Y ′

in the mentioned path. Let W1 be the set of nodes between X and Y ′. Let W2 and W3 be the nodes
in the paths from N to Q and from N to R respectively. Consider the graph G′ where the arrows in
the subpath from N to Q are reversed and all nodes except for {X,W1, Y

′, Q,W2, N,W3, R, S} are
disconnected from {X,W1, Y

′, Q,W2, N,W3, R, S}. Any model constructed for G′ can be translated
to a model compatible with G using lemma 7. Following the same derivation as in case 2 (taking into
account that Z is disconnected from the rest of the graph) yields:

Q2 = γ
P1(y′,x, S=1)∑
Y ′ P1(y′,x, S=1)

The numerator of the last expression can be rewritten as:

P1(y′,x, S=1) =
∑
Q

P1(y′,x, q, S=1)

=
∑
Q

P1(x)P1(y′ | x, q)P1(q)P1(S=1 | q)
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By rewriting the denominator similarly, the term P1(x) appearing in both vanishes, then Q2 becomes:

Q1 = γ

∑
Q P1(y′ | x, q)P1(q)∑

Y ′,Q P1(y′ | x, q)P1(q)

Q2 = γ

∑
Q P1(y′ | x, q)P1(q)P1(S=1 | q)∑

Y ′,Q P1(y′ | x, q)P1(q)P1(S=1 | q)

Lemma 8 can be employed to set P1(r | q) = 1/2 + ε/2, P1(r | q) = 1/2 − ε/2 where ε = (1/5)k

(using p = 3/5, q = 2/5). Define P (S=1 | r) = 2/3 and P (S=1 | r) = 1/2. Calculate P (S=1 | q) as∑
R P1(r | q)P1(S=1 | r). Also by lemma 8 let P1(y′ | q, x) = P1(y′ | q, x) = 3/4, P1(y′ | q, x) = P1(y′ |

q, x) = 1/2. It leads to:

Q1 = γ 3
8 Q2 = γ

(
3
8 + ε

56

)
which are never equal.

case 5: There is confounding path between Y ′ and S consisting of unobservable variables.
The models for this case can be constructed as in case 4, then moving the variables in the in the path
from Q to R (included) from the set of observables to the set of unobservables.

case 6: There is a path p connecting Y ′ and S that goes through an ancestor of both, and contains some
Z0 ∈ Z.
Let N,Q,R be be defined as in the previous case, also construct G′ the same way. Following the same
derivation strategy as in case 3, the query expressions become:

Q1 = γ
∑
Z0

∑
Q P1(y′ | x, q)P1(q)P1(z0 | q)∑

Y ′,Q P1(y′ | x, q)P1(q)P1(z0 | q)
P1(z0)

Q2 = γ
∑
Z0

∑
Q P1(y′ | x, q)P1(q)P1(z0 | q)∑

Y ′,Q P1(y′ | x, q)P1(q)P1(z0 | q)
P1(z0 | S=1)

Now, P1(z0) and P1(z0 | S=1) are derived in similar terms:

P1(z0) =
∑
Q

P1(z0, q) =
∑
Q

P1(q)P1(z0 | q)

P1(z0 | S=1) =

∑
R P1(S = 1, z0, r)∑

Z0,R
P1(S = 1, z0, r)

=
P1(z0)

∑
R P1(r | z0)P1(S = 1 | r)∑

Z0
P1(z0)

∑
R P1(r | z0)P1(S = 1 | r)

Use lemma 8 to parametrize P1(r | z0) = 1/2 + ε1/2, P1(r | z0) = 1/2 − ε1/2, P (z0 | q) = 1/2 +
ε2/2, P (z0 | q) = 1/2 − ε2/2 where εi = (1/5)ki , i = {1, 2} (using p = 3/5, q = 2/5 in both cases).
Define P (S=1 | r) = 2/3 and P (S=1 | r) = 1/2. Also by lemma 8 let P1(y′ | q, x) = P1(y′ | q, x) =
3/4, P1(y′ | q, x) = P1(y′ | q, x) = 1/2. The queries end up as:

Q1 = γ 3
8 Q2 = γ

(
3
8 + ε1ε2

56

)
Which are never equal.

Now, suppose condition (d) does not hold. It should be the case that some Z0 ∈ Z− is connected to Y
given X,Z+, S in GX . There two possible cases (depicted in Fig. 8) not contradicting previous conditions:
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X Y ′

Z0

S

(a) Case 1

X Y ′

Z0

S

(b) Case 2

Figure 8: Cases considered for the necessity of condition (d) in the proof for Thm. 1. Dotted directed arrows
indicate chains of arbitrary length in the graph.

case 1: Z0 is an ancestor of X and Y ′, and S is a descendant of X.
Let W1 be the nodes in the path between Z0 and X, W2 those between Z0 and Y ′, and W3 those be-
tween X and S. As in previous cases, consider the graphG′ where all nodes but {X, Z0, Y

′,W1,W2,W3}
are disconnected from this set. Also, suppose X and Y ′ are not connected by any path not going through
Z0. The queries in the corresponding models can be expressed as:

Q1 = γ
∑
Z0

P1(y′ | x, z0)P1(z0) = γ
∑
Z0

P1(y′ | z0)P1(z0) = γP1(y′)

Q2 = γ
∑
Z0

P1(y′ | x, z0, S=1)P1(z0 | S=1) = γ
∑
Z0

P1(y′ | z0)P1(z0 | S=1)

The term P1(z0 | S=1) is available as:

P1(z0 | S=1) =
P1(z0)

∑
X P1(x | z0)P (S=1 | x)∑

X,Z0
P1(z0)P1(x | z0)P (S=1 | x)

Let P1(z0) = 1/2, P1(y′ | z0) = 1/2 + ε1/2, P (y′ | z0) == 1/2 − ε1/2, P1(x | z0) = 1/2 + ε2/2, P (x |
z0) = 1/2 − ε2/2. Also P1(S=1 | x) = 1/2 + ε3, P1(S=1 | x) = 1/2 − ε3 where εi = (1/5)ki , i = 1, 2, 3
(using lemma 8 with p = 3/5, q = 2/5 in all cases):

Q1 = 1
2γ Q2 = γ

(
1
2 + ε1ε2ε3

2

)
Which are never equal.

case 2: Z0 is an ancestor of X and a descendant of Y ′ and S is a descendant of X.
In this case there are no causal paths between X and Y ′ otherwise Z0 violates condition (a). Lemma 7
can be used to change the direction of the edges in the path from Y ′ to Z0 while staying in the same
equivalence class, then the same parametrization from the previous case applies.

A.2 Proof for the Second Criterion

Here the definition and theorem is stated again and then proved in full:

Definition 5 (Generalized Adjustment Criterion Type 2). A set Z satisfies the generalized criterion relative
to X,Y, a set of variables measured under selection bias M and a set of variables observed in the overall
population T in a causal model with graph G augmented with the selection mechanism S if:
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(a) No element of Z is a descendant in GX of any W /∈ X which lies on a proper causal path from X to
Y.

(b) All non-causal paths between X and Y in G are blocked by Z.

(c) Y is d-separated from the selection mechanism S given Z and X, i.e., (Y ⊥⊥ S | X,Z).

(d) The variables are measured with bias (Z,X,Y ⊆ M) and the covariates are available without bias
(Z ⊆ T)

Theorem 2 (Generalized Adjustment Formula Type 2). Given disjoint sets of variables X,Y and Z, and
sets M,T in a causal model with graph G. In every model inducing G, the effect P (y | do(x)) is given by

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z) (18)

if and only if the set Z satisfies the generalized adjustment criterion type 2 relative to the pair X,Y.

Proof. (if) Suppose Z satisfy the conditions of the theorem relative to the pair X,Y and the sets M,T. By
conditions (a) and (b), the effect can be written as:

P (y | do(x)) =
∑

Z
P (y | x, z)P (z)

Note that S can be introduced to the first term by cond. (c), which entail Eq. (18). Cond. (d) ensures that
both terms in the expression are estimable from the available distributions.

(Only if) This direction is proved using the contrapositive: Assume conditions (a) or (b) do not hold,
then, the same argument as in the proof of the previous type applies here. That is, even if recoverable the
adjustment formula does not rely the correct causal effect.

As in the previous theorem, the prove of necessity for condition (c), required counter-examples for the
identifiability and recoverability of the causal effect. Let V represents all variables in the graph except
for the selection mechanism S, and Q refer to the adjustment formula as in (18) we construct two SCMs,
compatible with G such that they agree in the probability distribution under selection bias:

P1(v | S=1) = P2(v | S=1) (32)

and on the non-biased distribution over Z,

P1(z) = P2(z) (33)

but Q1 in the first model provides a different distribution than Q2 in the second model. Let P1 be compatible
with G and P2 compatible with GS (a model where S is independent from all other variables) such that
(V⊥⊥S)P2

. Recoverability should hold for any parametrization, hence, without loss of generality, all variables
are assumed to be binary. Every construction parametrizes P1 through its factors (as in lemma 6) and then
parametrize P2 to enforce (32) and (33). Moreover, (32) also equals to P2(v).

Now, lets assume condition (c) does not hold, then there is an open path between Y and S not blocked
when Z is observed. As for the previous proof, a variable Y ′ ∈ Y not satisfying the condition is fixed and
the query is studied as:

Q = γ
∑
Z

P (y′ | x, z)P (z)

where γ represents the product of the marginal distribution of the remaining Y.
Fig. 9 illustrates the cases in which condition (c) may be unsatisfied, they are described in the sequel:
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L R
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(f) Case 6

Figure 9: Cases considered for the necessity of condition (c) in the proof for Thm. 2. Dotted directed arrows
indicate chains of arbitrary length in the graph.
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case 1: Y ′ ∈ PaS
Proceed exactly as in case 1 of the proof for Thm. 1.

case 2: There is a directed path p from Y ′ to S not containing any node in Z
Same as case 2 of Thm. 1.

case 3: There is a path from Y ′ to S passing through an ancestor of both, with no colliders or any node in
Z.
Same as case 4 in the proof for Thm. 1.

case 4: There is a non-directed path from Y ′ to S with some Z0 ∈ Z as a collider.
X must be disconnected from Y ′ otherwise condition (a) is violated since Z0 is a descendant of Y ′

which belongs to every causal path from X to Y ′. Let N be the common ancestor of S and Z0, let
L be the parent of Z0 and R be the parent of S in that path. Consider the subgraph G′ where all
nodes but for those in the mentioned path between Y ′ and S are disconnected from all others, using
lemma 7 in the portion between L and N to reverse the directionality of the arrows and still produce
an equivalent model for the original graph. This case differs from the previous ones, here the causal
effect P (y′ | do(x)) = P (y′), however the adjustment formula Q will not be equal to this effect in every
model compatible with the graph. To see it, it is enough to construct one model M as follows:

Q = γ
∑
Z

P (y′ | x, z, S=1)P (z)

= γ
∑
Z0

∑
Z′

P (y′ | x, z0, z′, S=1)P (z0, z
′)

= γ
∑
Z0

P (y′ | x, z0, S=1)P (z0)

= γ
∑
Z0

P (y′,x, z0, S=1)∑
Y ′ P (y′,x, z0, S=1)

P (z0)

The numerator of the fraction in the last expression can be decomposed as:

P (y′,x, z0, S=1) =
∑
Q,L

P (y′,x, q, z0, l, S=1)

= P (x)P (y′)
∑
Q,L

P (q | y′)P (z0 | q, l)P (l)P (S=1 | l)

Performing a similar decomposition in the denominator, and considering that the factor P (x) appears
in both and can be cancelled out, the queries become:

Q = γ
∑
Z0

P (y′)
∑
L,Q P (q | y′)P (z0 | q, l)P (l)P (S=1 | l)∑

Y ′ P (y′)
∑
L,Q P (q | y′)P (z0 | q, l)P (l)P (S=1 | l)

P (z0)

The term P (z0) can be computed as:

P (z0) =
∑
Y ′

P (y′)
∑
L,Q

P (q | y′)P (l)P (z0 | q, l)

And P (S=1 | l) as

P (S=1 | l) =
∑
R

P (r | l)P (S=1 | r)
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Using lemma 6 set P (y′) = P (l) = 1/2, P (z0 | q, l) = 1/3, P (z0 | q, l) = 2/3, P (z0 | q, l) = 1/2, P (z0 |
q, l) = 1/2. By lemma 8 let P (q | y) = 1/2−ε, P (q | y) = 1/2+ε, P (r | l) = 1/2−ε2, P (r | l) = 1/2+ε1,
where εi = (1/5)ki , i = 1, 2 (having p = 3/5, q = 2/5 in both cases).
Let P (S=1 | l) = α, P (S=1 | l̄) = β, and pick any 0 < α, β < 1. This result in:

P (y | do(x)) =
γ

2

Q =
γ

2

1764− ε22 − ε1ε22
1764− ε22

Q is always different that P (y | do(x)).

case 5: There is a path between Y ′ and S passing by an ancestor of Y ′ having some X ′ ∈ X as a collider.
Such path would have arrows incoming to X ′. But it is also an open non-causal path between Y ′ and
X ′, violating condition (b).

case 6: There is a path p between Y ′ and S passing by an ancestor of Y ′ having some Z0 ∈ Z as a collider.
Let O be the common ancestor of Y ′ and Z0 and let N be the common ancestor of Z0 and S in in that
path. Let R be the parent of S, Q the parent of Z0 in the path to Y ′ and L the parent of Z0 in the
path to S. Consider the subgraph G′ where X is disconnected from Y ′ and lemma 7 is applied to all
the edges in the path between O and Y ′. Then, the model can be parametrized exactly as for case 4.

If condition (d) does not hold it is either because, one, Z,X or Y are not available in the biased
distribution, in which case the estimation is impossible. Second, P (z) is not available nor recoverable,
therefore the adjustment expression given is not estimable either.
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