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Abstract

Controlling for selection and confounding biases are two of
the most challenging problems in the empirical sciences as
well as in artificial intelligence tasks. Covariate adjustment
(or, Backdoor Adjustment) is the most pervasive technique
used for controlling confounding bias, but the same is obliv-
ious to issues of sampling selection. In this paper, we intro-
duce a generalized version of covariate adjustment that simul-
taneously controls for both confounding and selection biases.
We first derive a sufficient and necessary condition for recov-
ering causal effects using covariate adjustment from an ob-
servational distribution collected under preferential selection.
We then relax this setting to consider cases when additional,
unbiased measurements over a set of covariates are available
for use (e.g., the age and gender distribution obtained from
census data). Finally, we present a complete algorithm with
polynomial delay to find all sets of admissible covariates for
adjustment when confounding and selection biases are simul-
taneously present and unbiased data is available.

Introduction
One of the central challenges in data-driven fields is to com-
pute the effect of interventions – for instance, how increas-
ing the educational budget will affect violence rates in a city,
whether treating patients with a certain drug will help their
recovery, or how increasing the product price will change
monthly sales? These questions are commonly referred as
the problem of identification of causal effects. There are
two types of systematic bias that pose obstacles to this kind
of inference, namely confounding bias and selection bias.
The former refers to the presence of a set of factors that af-
fect both the action (also known as treatment) and the out-
come (Pearl 1993), while the latter arises when the action,
outcome, or other factors differentially affect the inclusion
of subjects in the data sample (Bareinboim and Pearl 2016).

The goal of our analysis is to produce an unbiased esti-
mand of the causal effect, specifically, the probability dis-
tribution of the outcome when an action is performed by an
autonomous agent (e.g., FDA, robot), regardless of how the
decision would naturally occur (Pearl 2000, Ch. 1). For ex-
ample, consider the graph in Fig. 1(a) in which X represents
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a treatment (e.g., taking or not a drug), Y represents an out-
come (health status), and Z is a factor (e.g., gender, age) that
affects both the propensity of being treated and the outcome.
The edges (Z,X) and (Z, Y ) may encode the facts ”gender
affects how the drug is being prescribed” and ”gender af-
fects recovery” respectively – for example, females may be
more health conscious, so they seek for treatment more fre-
quently than their male counterparts and at the same time
are less likely to develop large complications for the par-
ticular disease. Intuitively, the causal effect represents the
variations of X that bring about change in Y regardless of
the influence of Z on X , which is graphically represented
in Fig. 1(b). Mutilation is the graphical operation of remov-
ing arrows representing a decision made by an autonomous
agent of setting a variable to a certain value. The mathemat-
ical counterpart of mutilation is the do() operator and the
average causal effect of X on Y is usually written in terms
of the do-distribution P (y | do(x)) (Pearl 2000, Ch. 1).

The gold standard for obtaining the do-distribution is
through the use of randomization, where the treatment as-
signment is selected by a randomized device (e.g., a coin
flip) regardless of any other set of covariates (Z). In fact,
this operation physically transforms the reality of the un-
derlying population (Fig. 1(a)) into the corresponding mu-
tilated world (Fig. 1(b)). The effect of Z on X is neutral-
ized once randomization is applied. Despite its effective-
ness, randomized studies can be prohibitively expensive, and
even unattainable in certain cases, either for technical, eth-
ical, or technical reasons – e.g., one cannot randomize the
cholesterol level of a patient and record if it causes the heart
to stops, when trying to assess the effect of cholesterol level
on cardiac failure.

An alternative way of computing causal effects is
trying to relate non-experimentally collected samples
(drawn from P (z, x, y)) with the experimental distribution
(P (y | do(x))). Non-experimental (often called observa-
tional) data relates to the model in Fig. 1(a) where sub-
jects decide by themselves to take or not the drug (X)
while influenced by other factors (Z). There are a num-
ber of techniques developed for this task, where the most
general one is known as do-calculus (Pearl 1995). In prac-
tice, one particular strategy from do-calculus called adjust-
ment is used the most. It consists of averaging the ef-
fect of X on Y over the different levels of Z, isolating



the effect of interest from the effect induced by other fac-
tors. Controlling for confounding bias by adjustment is
currently the standard method for inferring causal effects
in data-driven fields, and different properties and enhance-
ments have been studied in statistics (Rubin 1974; Robin-
son and Jewell 1991; Pirinen, Donnelly, and Spencer 2012;
Mefford and Witte 2012) and AI (Pearl 1993; 1995; Pearl
and Paz 2010; Shpitser, VanderWeele, and Robins 2010;
Maathuis and Colombo 2015; van der Zander, Liskiewicz,
and Textor 2014).

Orthogonal to confounding, sampling selection bias is in-
duced by preferential selection of units for the dataset, which
is usually governed by unknown factors including treatment,
outcome, and their consequences. It cannot be removed by
a randomized trial and may stay undetected during the data
gathering process, the whole study, or simply never be de-
tected1. Consider Fig. 1(e) where X and Y represent again
treatment and outcome, but S represents a binary variable
that indicates if a subject is included in the pool (S=1 means
that the unit is in the sample, S=0 otherwise). The effect of
X on Y in the entire population (P (y | do(x))) is usually
not the same as in the sample (P (y | do(x), S=1)). For in-
stance, patients that went to the hospital and were sampled
are perhaps more affluent and have better nutrition than the
average person in the population, which can lead to a faster
recovery. This preferential selection of samples challenges
the validity of inferences in several tasks in AI (Cooper
1995; Cortes et al. 2008; Zadrozny 2004) and Statistics
(Little and Rubin 1986; Kuroki and Cai 2006) as well as
in the empirical sciences (Heckman 1979; Angrist 1997;
Robins 2001).

The problem of selection bias can be addressed by re-
moving the influence of the biased sampling mechanism on
the outcome as if a random sample of the population was
taken. For the graph in Fig. 1(d), for example, the dis-
tribution P (y | do(x)) is equal to P (y | x, S=1) because
there are not external factors that affect X and the selec-
tion mechanism S is independent of the outcome Y when
the effect is estimated for the treatment X . There exists a
complete non-parametric2 solution for the problem of esti-
mating statistical quantities from selection biased datasets
(Bareinboim and Pearl 2012), and also sufficient and algo-
rithmic conditions for recovering from selection in the con-
text of causal inference (Bareinboim, Tian, and Pearl 2014;
Bareinboim and Tian 2015).

Both confounding and selection biases carry extrane-
ous “flow” of information between treatment and outcome,
which is usually deemed “spurious correlation” since it does
not correspond to the effect we want to compute on. De-
spite all the progress made in controlling these biases sep-
arately, we show that to estimate causal effects consider-
ing both problems requires a more refined analysis. First,
note that the effect of X on Y can be estimated by block-
ing confounding and controlling for selection, respectively,

1(Zhang 2008) noticed some interesting cases where detection
is feasible in a class of non-chordal graphs.

2No assumptions about the about the functions that relates vari-
ables are made (i.e. linearity, monotonicity).
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Figure 1: (a) and (d) give simple examples for confound-
ing and selection bias respectively. (b) represents the model
in (a) after an intervention is performed on X . (c) and (e)
present examples where confounding and selection bias can
not be removed respectively. In (f) we can control for ei-
ther confounding or selection bias, but not for both unless
we have external data on P (z).

in Figs. 1(a) and (d). On the other hand, confounding cannot
be removed in Fig. 1(c) nor it can be recovered from selec-
tion bias in Fig. 1(e). Perhaps surprisingly, Fig. 1(f) presents
a scenario where either confounding or selection can be ad-
dressed separately (P (y|do(x)) =

∑
Z P (y|x, z)P (z) and

P (z, y|do(x)) = P (z, y|do(x), S=1)), but not simultane-
ously (without external data). As this example suggests,
there is an intricate connection between these two biases that
disallow the methods developed for these problems of being
applied independently and then combined.

In this paper, we study the problem of estimating causal
effects from models with an arbitrary structure that involve
both biases. We establish necessary and sufficient conditions
that a set of variables should fulfill so as to guarantee that the
target effect can be unbiasedly estimated by adjustment. We
consider two settings – first when only biased data is avail-
able, and then a more relaxed setting where additional unbi-
ased samples of covariates are available for use (e.g., census
data). Specifically, we solved the following problems:

1. Identification and recoverability without external
data: The data is collected under selection bias,
P (v | S=1), when does a set of covariates Z allow
P (y | do(x)) to be estimated by adjusting for Z?

2. Identification and recoverability with external data:
The data is collected under selection bias P (v | S=1) and
unbiased samples of P (t),T ⊆ V, are available. When
does a set of covariates Z ⊆ T license the estimation of
P (y | do(x)) by adjusting for Z?

3. Finding admissible adjustment sets with external data:
How can we list all admissible sets Z capable of identify-
ing and recovering P (y | do(x)), for Z ⊆ T ⊆ V?

Preliminaries
The systematic analysis of confounding and selection biases
requires a formal language where the characterization of the
underlying data-generating model can be encoded explicitly.



We use the language of Structural Causal Models (SCM)
(Pearl 2000, pp. 204-207). Formally, a SCM M is a 4-tuple
〈U, V, F, P (u)〉, where U is a set of exogenous (latent) vari-
ables and V is a set of endogenous (measured) variables. F
represents a collection of functions F = {fi} such that each
endogenous variable Vi ∈ V is determined by a function
fi ∈ F , where fi is a mapping from the respective domain
of Ui ∪ Pai to Vi, Ui ⊆ U , Pai ⊆ V \Vi (where Pai is the
set of endogenous variables that are arguments of fi), and
the entire set F forms a mapping from U to V . The uncer-
tainty is encoded through a probability distribution over the
exogenous variables, P (u). Within the structural semantics,
performing an action X=x is represented through the do-
operator, do(X=x), which encodes the operation of replac-
ing the original equation of X by the constant x and induces
a submodel Mx. For a detailed discussion on the properties
of structural models, we refer readers to (Pearl 2000, Ch. 7).

We will represent sets of variables in bold. The causal
effect of a set X when it is assigned a set of values x,
on a set Y when it is instantiated as y will be writ-
ten as P (y | do(x)), which is a short hand notation for
P (Y=y | do(X=x)). Mainly, we will operate with P (v),
P (v | do(x)), P (v | S=1), respectively, the observational,
experimental, and selection-biased distributions.

Formally, the task of estimating a probabilistic quantity
from a selection-biased distribution is known as recovering
from selection bias (Bareinboim and Pearl 2012). It is not
uncommon for observations of a subset of the variables over
the entire population (unbiased data) to be available for use.
Therefore, we will consider two subsets of V, M,T ⊆ V,
where M contains the variables for which data was collected
under selection bias, and T encompasses the variables ob-
served in the overall population, without bias. The absence
of unbiased data is equivalent to have T = ∅.

Selection Bias with Adjustment
The main justification for the validity of adjustment for
confounding comes under a graphical conditions called the
“Backdoor criterion” (Pearl 1993; 2000), as shown below:

Definition 1 (Backdoor Criterion (Pearl 2000)). A set of
variables Z satisfies the Backdoor Criterion relative to a pair
of variables (X,Y ) in a directed acyclic graph G if:

(i) No node in Z is a descendant of X .
(ii) Z blocks every path between X and Y that contains an

arrow into X .

The heart of the criterion lies in cond. (ii), where the set
Z is required to block all the backdoor paths between X and
Y that generate confounding bias. Furthermore, cond. (i)
forbids the inclusion of descendants of X in Z, which in-
tends to avoid opening new non-causal paths. For example,
the empty set is admissible for adjustment in Fig. 1(e), but
adding S would not be allowed since it is a descendant of X
and opens the non-causal path X → S ← Y . On the other
hand, even though S does not open any non-causal path in
Fig. 1(f), the criterion does not allow it to be used for ad-
justment.

X

Z1 Z2 Y

S

Figure 2: A graph that does not satisfy the s-backdoor crite-
rion (respect to Z), but the adjustment formula is recoverable
and corresponds to desired causal effect.

(Bareinboim, Tian, and Pearl 2014) noticed that adjust-
ment could be used for controlling for selection bias, in ad-
dition to confounding, which lead to a sufficient graphical
condition called Selection-Backdoor criterion.

Definition 2 (Selection-Backdoor Criterion (Bareinboim
and Tian 2015) ). A set Z = Z+ ∪ Z−, with Z− ⊆ DeX
and Z+ ⊆ V \DeX (where DeX is the set of variables that
are descendants of X in G) satisfies the selection backdoor
criterion (s-backdoor, for short) relative to X,Y and M,T
in a directed acyclic graph G if:

(i) Z+ blocks all back door paths from X to Y

(ii) X and Z+ block all paths between Z− and Y , namely,
(Z− ⊥⊥ Y | X,Z+)

(iii) X and Z block all paths between S and Y , namely,
(Y ⊥⊥ S | X,Z)

(iv) Z ∪ {X,Y } ⊆M and Z ⊆ T

The first two conditions echo the extended-backdoor
(Pearl and Paz 2010)3, while cond. (iii) and (iv) guarantee
that the resultant expression is estimable from the available
datasets. If the S-Backdoor criterion holds for Z relative to
X,Y and M,T in G, then the effect P (y | do(x)) is identi-
fiable, recoverable, and given by

P (y | do(x)) =
∑
Z

P (y | x, z, S=1)P (z) (1)

We note here that the S-Backdoor is sufficient but not nec-
essary for adjustment. To witness, consider the model in
Fig. 2 where Z = {Z1, Z2},M = {X,Y, Z1, Z2}, and
T = {Z1, Z2}. Here, Z+ = ∅,Z− = {Z1, Z2}. Condition
(ii) in Def. 2 is violated, namely (Z1, Z2 ⊥6⊥ Y | X). Per-
haps surprisingly, the effect P (y | do(x)) is identifiable and
recoverable, as follows:

P (y|do(x)) = P (y|x) (2)

= P (y|x)
∑

Z1

P (z1) (3)

=
∑

Z1

P (y|x, z1)P (z1) (4)

=
∑

Z1,Z2

P (y|x, z1, z2)P (z2|x, z1)P (z1) (5)

=
∑

Z1,Z2

P (y|x, z1, z2)P (z2|z1)P (z1) (6)

=
∑

Z1,Z2

P (y|x, z1, z2, S=1)P (z1, z2) (7)

3The extended-backdoor augments the backdoor criterion to al-
low for descendants of X that could be harmless in terms of bias.



(2) follows from the application of the second rule of
do calculus and the independence (X⊥⊥Y )GX

. Equations
(5),(6),(7) use the independences (Y⊥⊥Z1|X), (Z2⊥⊥X|Z1)
and (S⊥⊥Y |X,Z1, Z2) respectively. The final expression (7)
is estimable from the available data.

Considering that Z = ∅ controls for confounding, adjust-
ing for Z = {Z1, Z2} seems unnecessary. As it turns out,
covariates irrelevant for confounding control, could play a
role when we compound this task with recovering from se-
lection bias (where Y will need to be separated from S).

Generalized Adjustment
without External Data

Let us consider the case when only biased data P (v | S=1)
over V is measured. Our interest in this section is on condi-
tions that allow P (y | do(x)) to be computed by adjustment
without external measurements.

Consider the model G in Fig. 3(a). Note that Y and S
are marginally independent in GX (the graph after an inter-
vention on X where all edges into X are not present). As
for confounding, Z needs to be conditioned on, but doing
so opens a path between Y and S, letting spurious correla-
tion from the bias to be included in our calculation. It turns
out that with a careful manipulation of the expression, both
biases can be controlled as follows:

P (y | do(x)) = P (y | do(x), S=1) (8)

=
∑

Z
P (y | do(x), z, S=1)P (z | do(x), S=1) (9)

=
∑

Z
P (y | x, z, S=1)P (z | S=1) (10)

Eq. (8) follows from the independence (Y ⊥⊥ S | X) in the
mutilated graph GX . Next we condition on Z and the (10) is
valid by the application of the second rule of do-calculus to
the first term and the third rule to the second in (9). Note that
every term in (10) is estimable from the biased distribution.

Next we introduce a complete criterion to determine
whether adjusting by a set of covariates is admissible to
identify and recover the causal effect. Before that, we re-
quire the concept of proper causal path.

Definition 3 (Proper Causal Path (Shpitser, VanderWeele,
and Robins 2010)). Let X,Y be sets of nodes. A causal
path from a node in X to a node in Y is called proper if it
does not intersect X except at the end point.

Definition 4 (Generalized Adjustment Criterion Type 1). A
set Z satisfies the generalized criterion relative to X,Y in
a causal model with graph G augmented with the selection
mechanism S if:

(a) No element in Z is a descendant in GX of any W /∈ X
which lies on a proper causal path from X to Y.

(b) All non-causal X-Y paths are blocked by Z.
(c) Y is independent of S given X under intervention:

(Y ⊥⊥ S | X)GX
.

(d) Z can be partitioned in two sets Z+,Z− such that (Y⊥⊥
Z− | X,Z+, S)GX

, Z− = Z \ Z+, and Z+ = {Z ′ ∈
Z | (Z ′ ⊥⊥X | S)G

X(S)
}.

XZ Y

S

(a)

Z

X YS

(b)

Figure 3: Models where Z satisfies Def. 4

G
X(S)

is the graph where all edges into X ∈ X \ AnS) are
removed, where AnS is the set of ancestors of the variable
S in G.

Theorem 1 (Generalized Adjustment Formula Type 1).
Given disjoint sets of variables X,Y and Z in a causal
model with graph G. The effect P (y | do(x)) is given by

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z | S=1) (11)

in every model inducing G if and only if they satisfy the gen-
eralized adjustment criterion type 1 (Def. 4).

Proof. Suppose X,Y,Z satisfy the criterion. Then we can
decompose Z into Z− and Z+. Conditions (a) and (b) imply
(Y⊥⊥X | Z)GX

, but (Y⊥⊥X | Z, S)GX
still holds, unless a

path p which has S or an ancestor of it as a collider is opened
in which case S and Y are d-connected in p. By condition
(c), this is only possible if some X ∈ X is also a collider
in p, which violate condition (b). We can obtain the causal
effect as:

P (y | do(x)) = P (y | do(x), S=1) (12)

=
∑

Z+
P (y|do(x), z+, S=1)P (z+|do(x), S=1) (13)

=
∑

Z+
P (y | do(x), z+, S=1)P (z+ | S=1) (14)

=
∑

Z+
P (y | do(x), z+, S=1)

∑
Z−

P (z|S=1) (15)

=
∑

Z
P (y | do(x), z, S=1)P (z | S=1) (16)

=
∑

Z
P (y | x, z, S=1)P (z | S=1) (17)

Eq. (12) follows from cond. (c), conditioning on Z+ and
applying the third rule of do-calculus using the definition
of Z+ in cond. (d) we obtain (14). Conditioning the term
P (Z+) by Z− and adding Z− to the first term using condi-
tion (d) results in (16). Finally applying rule 2 of do-calculus
using independence (Y⊥⊥X | Z, S)GX

allows to remove do
operator resulting in the adjustment formula in eq. (11). The
necessity part of the proof is presented in the supplemental
material.

Conditions (a) and (b) echo the Extended Back-
door/Adjustment Criterion (Pearl and Paz 2010; Shpitser,
VanderWeele, and Robins 2010) and guarantee that Z is ad-
missible for adjustment in the unbiased distribution. Con-
dition (c) requires the outcome Y to be independent of the
selection mechanism S without observing any covariate Z.
Intuitively, condition (d) ensures that the influence of Z on S
is insensitive to the intervention or than they are independent



of the outcome. The model in Fig. 3(b) also satisfies Def. 4.
Similarly to Fig. 3(a), if we control for confounding and try
to remove the do-operator, it appears that selection bias can-
not be removed since the independence (Y ⊥⊥ S | X,Z)
does not hold in G. Still, there exists a derivation strategy
encapsulated in Def. 4 / Thm. 1 that allow one to recover
from both selection and confounding biases.

Generalized Adjustment With External Data
A natural question that arises is whether additional measure-
ments in the population level over the covariates can help
identifying and recovering the desired causal effect. The fol-
lowing criterion tries to relax the previous results by lever-
aging the unbiased data available.

Definition 5 (Generalized Adjustment Criterion Type 2). A
set Z satisfies the generalized criterion relative to X,Y, a
set of variables measured under selection bias M and a set
of variables observed in the overall population T in a causal
model with graph G augmented with the selection mecha-
nism S if:

(a) No element in Z is a descendant in GX of any W /∈ X
which lies on a proper causal path from X to Y.

(b) All non-causal X-Y paths in G are blocked by Z.
(c) Y is independent of the selection mechanism S given Z

and X: (Y ⊥⊥ S | X,Z)

(d) The variables are measured with bias (Z,X,Y ⊆ M)
and the covariates are available without bias (Z ⊆ T)

Theorem 2 (Generalized Adjustment Formula Type 2).
Given disjoint sets of variables X,Y and Z, and sets M,T
in a causal model with graph G. In every model inducing G,
the effect P (y | do(x)) is given by

P (y | do(x)) =
∑

Z
P (y | x, z, S=1)P (z) (18)

if and only if they satisfy the criterion in Def. 5.

Proof. Suppose X,Y,Z,M,T satisfy the criterion, by con-
ditions (a) and (b), for every model induced by G we have:

P (y | do(x)) =
∑

Z
P (y | x, z)P (z)

We note that S can be introduced to the first term by cond.
(c), which entail Eq. (18). Cond. (d) ensures that both terms
in the expression are estimable from the available distribu-
tions. The necessity part of the proof is more involved and
is provided in the supplemental material (Correa and Barein-
boim 2016).

As in Def. 4, conditions (a) and (b) ensure Z is valid for
adjustment without selection bias. Condition (c) requires
that the influence of the selection mechanism in the outcome
is nullified by conditioning on X and Z and condition (d)
simply guarantees that the adjustment expression can be es-
timated from the available data. Fig. 4 presents two causal
models that satisfies the previous criterion if measurements
over Z = {Z1, Z2, Z3} are available. To witness how the

X

Z1 Z2

Z3

Y

S

(a)

X1

X2

Z1 Z2

Y

Z3

S

(b)

Figure 4: Models where the set Z satisfies Def. 5.

expression can be reached using do-calculus and probability
axioms, consider Fig. 4(a):

P (y|do(x)) =
∑

Z3

P (y|do(x), z3)P (z3|do(x)) (19)

=
∑

Z3

P (y | x, z3)P (z3) (20)

=
∑

Z1,Z3

P (y | x, z1, z3)P (z1, z3) (21)

=
∑

Z
P (y | x, z)P (z2 | x, z1, z3)P (z1, z3) (22)

=
∑

Z
P (y | x, z, S=1)P (z) (23)

We start by conditioning on Z3 and removing do(x) using
rule 3 of the do-calculus. Then conditioning the second term
on Z1, moving the summation to the left, and introducing Z1

into the first term results in (21). Eq. (22) follows from con-
ditioning the first term on Z2, and finally by removing X in
the second term using the independence (Z2⊥⊥X|Z1, Z3),
combining the last two distributions over the Z’s and in-
troducing the selection bias term using the independence
(Y ⊥⊥ S | X,Z) results in (23), which corresponds to (18).

Model in Fig. 4(b) also satisfies the type 2 criterion and
illustrates how this can be applied to models where X and
Y may be sets of variables.

Finding Admissible Sets for
Generalized Adjustment

A natural extension to the problem is how to systematically
list admissible sets for adjustment, using the criteria dis-
cussed in the previous sections. This is specially important
in practice where factors such as feasibility, cost, and statis-
tical power relate to the choosing of a covariate set.

In order to perform this kind of task efficiently, (van der
Zander, Liskiewicz, and Textor 2014) introduced a transfor-
mation of the model called the Proper Backdoor Graph and
formulate a criterion equivalent to the Adjustment Criterion:

Definition 6 (Proper Backdoor graph). Let G = (V,E)
be a DAG, and X,Y ⊆ V be pairwise disjoint subsets of
variables. The proper backdoor graph, denoted as Gpbd

XY, is
obtained from G by removing the first edge of every proper
causal path form X to Y.

Definition 7 (Constructive Backdoor Criterion (CBD)). Let
G = (V,E) be a DAG, and X,Y ⊆ V be pairwise disjoint



subsets of variables. The set Z satisfies the Constructive
Backdoor Criterion relative to (X,Y) in G if:

i) Z ⊆ V \Dpcp(X,Y) and
ii) Z d-separates X and Y in the proper backdoor graph

Gpbd
XY.

Where Dpcp(X,Y) = De((DeX(X) \X) ∩AnX(Y ))

The set Dpcp(X,Y) is exactly the set of nodes forbidden
by the first condition in both our generalized criteria, and
Gpbd

XY only contain X,Y paths that need to be blocked.
Lemma 3 (Constructive Backdoor =⇒ Generalized Ad-
justment Type 2). Any set Z satisfying the CDB applied to
Gpbd

(X∪S)Y and Dpcp(X∪S,Y)∪(V\T) relative to X,Y in
G also satisfies the Generalized Adjustment Criterion type 2.

Proof. By the equivalence between the CBD criterion and
the adjustment criterion, we have that Dpcp(X,Y) is ex-
actly the set of nodes forbidden by cond. (a) of the type 2
criterion, so

Dpcp(X ∪ S,Y) (24)
= De((DeX,S(X ∪ {S}) \ (X ∪ S)) ∩AnX,S(Y ))

Since S has no descendants, DeX,S(X∪{S}) = DeX(X)∪
S and AnX,S(Y ) = AnX(Y ). As a consequence Dpcp(X∪
S,Y) = Dpcp(X,Y) implying cond. (a) of Def. 5.

Gpbd
(X∪S)Y has all non-causal paths from X to Y present

in Gpbd
XY, therefore, if Z block all non-causal paths in the

former, it will do in the latter satisfying condition (b).

Every S – Y path may or may not contain X. If not, Z
should block it in Gpbd

(X∪S)Y. In the latter case, the subpath
from X to Y is either causal or non-causal. If it is causal
Z will not block it, but the S-Y path will be blocked by X.
If the subpath is non-causal Z should block it, therefore, the
larger path is blocked too. This argument implies condition
(c). Since CBD holds for Dpcp(X∪ S,Y)∪ (V \T) every
element in Z must belong to T satisfying condition (d).

Lemma 4 (Generalized Adjustment Type 2 =⇒ Construc-
tive Backdoor). Any set Z satisfying the Generalized Ad-
justment Criterion type 2 relative to X,Y in G also satisfies
the constructive backdoor criterion applied to Gpbd

(X∪S)Y and
Dpcp(X ∪ S,Y) ∪ (V \T).

Proof. By lemma 3, Dpcp(X ∪ S,Y) = Dpcp(X,Y),
which combined with condition (d) implies condition (i) of
the CBP.

By cond. (b) every non-causal path from X to Y is
blocked by Z and all paths from S to Y (which are always
non-causal when S is treated as an X) are blocked by Z,X
by cond. (c). Those two facts together imply cond. (ii) of the
CBD.

Theorem 5 (Generalized Adjustment Type 2 ⇔ Construc-
tive Backdoor). A set Z satisfies the Generalized Adjustment
Criterion type 2 relative to X,Y in G if and only if it sat-
isfies the CBC applied to Gpbd

(X∪S)Y and Dpcp(X ∪ S,Y) ∪
(V \T).

X1 W

X2

Z1 Z2

Y

Z3

S

(a)

X1 W

X2

Z1 Z2

Y

Z3

S

(b)

Figure 5: (a) shows a causal model and (b) the proper back-
door graph associated with it relative to X ∪ S and Y . The
gray nodes in (b) represents variables in Dpcp.

Proof. It follows immediately from lemmas 3,4.

Thm. 5 allows us to use the LISTSEP procedure (van der
Zander, Liskiewicz, and Textor 2014) to list all the valid sets
for the generalized adjustment type 2. The algorithm guar-
antees O(n(n+m)) polynomial delay, where n is the num-
ber of nodes and m is the number of edges in G (see (Takata
2010)). That means that the time needed to output the first
solution or indicate failure, and the time between the output
of consecutive solutions, is O(n(n+m)).

To provide the reader an intuition of how the algorithm
works, consider the graph in Fig. 5(a) and its associated con-
structive backdoor graph in (b). W is a “forbidden node” in
the sense that it cannot be used for adjustment and for this
example is the only element in Dpcp(X, Y ) assuming that
unbiased measurement on the covariates Z1, Z2 and Z3 are
available (i.e. {Z1, Z2, Z3} ⊆ T). The algorithm LIST-
SEP will output every set of variables that d-separates X∪S
from Y in the proper backdoor graph that does not contain
any node in Dpcp(X, Y ).

Conclusions

We provide necessary and sufficient conditions for identifi-
cation and recoverability from selection bias of causal ef-
fects by adjustment, applicable for data-generating mod-
els with latent variables and arbitrary structure in non-
parametric settings. Def. 4 and Thm. 1 provide a complete
characterization of identification and recoverability by ad-
justment when no external information is available. Def. 5
and Thm. 2 provide a complete graphical condition for
when external information on a set of covariates is avail-
able. Thm. 5 allowed us to list all sets that satisfies the last
criterion in polynomial-delay time, effectively helping in the
decision of what covariates need to be measured for recover-
ability. This is especially important when measuring a vari-
able is associated with a particular cost or effort. Despite the
fact that adjustment is neither complete nor the only method
to identify causal effects, it is in fact the most used tool in
the empirical sciences. The methods developed in this paper
should help to formalize and alleviate the problem of sam-
pling selection and confounding biases in a broad range of
data-intensive applications.
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